In probability theory, a normalizing constant or normalizing factor is used to reduce any probability function to a probability density function with total probability of one. For example, a Gaussian function can be normalized into a probability density function, which gives the standard normal distribution. In Bayes' theorem, a normalizing constant is used to ensure that the sum of all possible hypotheses equals 1. Other uses of normalizing constants include making the value of a Legendre polynomial at 1 and in the orthogonality of orthonormal functions. A similar concept has been used in areas other than probability, such as for polynomials. In probability theory, a normalizing constant is a constant by which an everywhere non-negative function must be multiplied so the area under its graph is 1, e.g., to make it a probability density function or a probability mass function. If we start from the simple Gaussian function we have the corresponding Gaussian integral Now if we use the latter's reciprocal value as a normalizing constant for the former, defining a function as so that its integral is unit then the function is a probability density function. This is the density of the standard normal distribution. (Standard, in this case, means the expected value is 0 and the variance is 1.) And constant is the normalizing constant of function . Similarly, and consequently is a probability mass function on the set of all nonnegative integers. This is the probability mass function of the Poisson distribution with expected value λ. Note that if the probability density function is a function of various parameters, so too will be its normalizing constant. The parametrised normalizing constant for the Boltzmann distribution plays a central role in statistical mechanics. In that context, the normalizing constant is called the partition function. Bayes' theorem says that the posterior probability measure is proportional to the product of the prior probability measure and the likelihood function.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.