Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les séries de Fourier, le calcul d'énergie, les espaces fonctionnels, les spectres de corrélation et la densité spectrale dans les signaux et les systèmes.
Couvre le résumé de la mécanique classique et de la physique des accélérateurs, en se concentrant sur la taille du faisceau, l'émittance, la divergence et la corrélation.
Explore les solutions de réseau neuronal profond pour l'équation électronique Schrödinger et leur efficacité de calcul dans la physique de nombreux corps.
Explique lestimation, la corrélation et la corrélation Pearson dans les statistiques, en se concentrant sur la mesure et la description des relations entre les variables.
Explore les réseaux neuronaux convolutifs, couvrant la convolution, la corrélation croisée, la mise en commun maximale, la structure des couches et des exemples tels que LeNet5 et AlexNet.
Explore la prédiction de la structure des protéines à partir des données de séquence en utilisant la modélisation de l'entropie maximale et discute des progrès récents dans la prédiction de la structure des protéines.