Théorie de HodgeLa théorie de Hodge est l'étude, avec l'apport notamment de la topologie algébrique, des formes différentielles sur une variété lisse. En conséquence elle éclaire l'étude des variétés riemanniennes et kählériennes, ainsi que l'étude géométrique des motifs. Elle tient son nom du mathématicien écossais William Hodge. Un des problèmes du prix du millénaire a trait à cette théorie : la conjecture de Hodge.
Élie CartanÉlie Joseph Cartan ( – ) est un mathématicien français qui a effectué des travaux fondamentaux dans la théorie des groupes de Lie et leurs applications géométriques. Il a également contribué de manière significative à la physique mathématique, à la géométrie différentielle, aux équations différentielles, à la théorie des groupes et à la mécanique quantique. Il est largement considéré comme l'un des plus grands mathématiciens du . Il a défendu avec succès sa thèse sur les groupes de Lie à l'École normale supérieure en 1894.
Closed and exact differential formsIn mathematics, especially vector calculus and differential topology, a closed form is a differential form α whose exterior derivative is zero (dα = 0), and an exact form is a differential form, α, that is the exterior derivative of another differential form β. Thus, an exact form is in the of d, and a closed form is in the kernel of d. For an exact form α, α = dβ for some differential form β of degree one less than that of α. The form β is called a "potential form" or "primitive" for α.
Topologie différentielleLa topologie différentielle est une branche des mathématiques qui étudie les fonctions différentiables définies sur des variétés différentielles, ainsi que les applications différentiables entre variétés différentielles. Elle est reliée à la géométrie différentielle, discipline avec laquelle elle se conjugue pour construire une théorie géométrique des variétés différentiables. Variété différentielle Les variétés différentielles constituent le cadre de base de la topologie différentielle.
Cohomologie de De RhamEn mathématiques, la cohomologie de De Rham est un outil de topologie différentielle, c'est-à-dire adapté à l'étude des variétés différentielles. Il s'agit d'une théorie cohomologique fondée sur des propriétés algébriques des espaces de formes différentielles sur la variété. Elle porte le nom du mathématicien Georges de Rham. Le affirme que le morphisme naturel, de la cohomologie de De Rham d'une variété différentielle vers sa cohomologie singulière à coefficients réels, est bijectif.
CohomologyIn mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.