Dihedral group of order 6In mathematics, D3 (sometimes alternatively denoted by D6) is the dihedral group of degree 3 and order 6. It equals the symmetric group S3. It is also the smallest non-abelian group. This page illustrates many group concepts using this group as example. The dihedral group D3 is the symmetry group of an equilateral triangle, that is, it is the set of all transformations such as reflection, rotation, and combinations of these, that leave the shape and position of this triangle fixed.
Pappus d'AlexandrieNOTOC Pappus d'Alexandrie — nom latinisé de Pappos d'Alexandrie, en grec — est l'un des plus importants mathématiciens de la Grèce antique. Il est né à Alexandrie en Égypte et a vécu au Très peu de choses sur sa vie sont connues. Les écrits nous suggèrent qu'il fut précepteur. Son principal ouvrage est connu sous le nom de Synagogè (paru vers 340 de notre ère). Il comprend au moins huit volumes qui nous sont parvenus, le reste ayant été perdu.
Métrique de PoincaréEn mathématiques, et plus précisément en géométrie différentielle, la métrique de Poincaré, due à Henri Poincaré, est le tenseur métrique décrivant une surface de courbure négative constante. C'est la métrique naturelle utilisée pour des calculs en géométrie hyperbolique ou sur des surfaces de Riemann.
Michel ChaslesMichel Chasles est un mathématicien français, né le à Épernon (en Eure-et-Loir) et mort le à Paris. On lui doit d'importants travaux en géométrie projective, où il montra toute la richesse de la notion de rapport anharmonique, ainsi qu'en analyse harmonique, avec la représentation de certains potentiels. Michel Chasles nait le à Épernon en Eure-et-Loir : il est le fils de Charles-Henri Chasles (1772-1853), marchand de bois et entrepreneur dans les ponts et chaussées et conseiller général d'Eure-et-Loir pour le canton de Chartres-Sud-Est et président du tribunal de commerce de Chartres.
Métrique de Cayley-KleinEn mathématiques, une métrique de Cayley-Klein est une métrique définie sur le complémentaire d'une quadrique fixée d'un espace projectif, la quadrique absolue, à l'aide du birapport. Cette métrique a été construite par Arthur Cayley en 1859 ; la construction fut complétée par Felix Klein entre 1871 et 1873. Les métriques de Cayley-Klein fournissent un cadre unifié aux différentes géométries euclidiennes et non euclidiennes, en y définissant la notion de distance par la même construction dans tous les cas.