Entrelacs (théorie des nœuds)En théorie des nœuds, un entrelacs est un enchevêtrement de plusieurs nœuds. L'étude des entrelacs et des nœuds est liée, plusieurs invariants s'interprétant plus naturellement dans le cadre général des entrelacs, au moyen notamment des relations d'écheveau. Un entrelacs est la donnée d'un plongement injectif d'une ou plusieurs copies du cercle S dans R ou dans S, appelées ses composantes, ou ses boucles. Deux entrelacs sont considérés équivalents lorsqu'ils sont identiques à isotopie près.
Invariant de nœudsthumb|Les deux nœuds sont équivalents, leur invariant est donc identique. En théorie des nœuds, un invariant de nœuds est une quantité définie pour chaque nœud qui est la même pour tous les nœuds équivalents. On parlera d'équivalence lorsqu'on peut passer d'un nœud à un autre par un ensemble de mouvements de Reidemeister. Ces invariants topologiques peuvent être de tout type : des booléens, des scalaires, des polynômes (polynôme d'Alexander, le polynôme de Jones, le ) ou encore le groupe fondamental du complément d'un nœud, les de Vassiliev et l'.
Crossing number (knot theory)In the mathematical area of knot theory, the crossing number of a knot is the smallest number of crossings of any diagram of the knot. It is a knot invariant. By way of example, the unknot has crossing number zero, the trefoil knot three and the figure-eight knot four. There are no other knots with a crossing number this low, and just two knots have crossing number five, but the number of knots with a particular crossing number increases rapidly as the crossing number increases.
Knot polynomialIn the mathematical field of knot theory, a knot polynomial is a knot invariant in the form of a polynomial whose coefficients encode some of the properties of a given knot. The first knot polynomial, the Alexander polynomial, was introduced by James Waddell Alexander II in 1923. Other knot polynomials were not found until almost 60 years later. In the 1960s, John Conway came up with a skein relation for a version of the Alexander polynomial, usually referred to as the Alexander–Conway polynomial.
Nœud premiervignette|90x90px| Entrelacs premier le plus simple En théorie des nœuds, un nœud premier, ou un entrelacs premier est un nœud ou entrelacs qui est, dans un certain sens, indécomposable. Les nœuds ou entrelacs qui ne sont pas premiers sont dits composés. Déterminer si un nœud donné est premier ou non peut être un problème non trivial. Un nœud ou entrelacs premier est un nœud ou entrelacs non trivial qui ne peut pas être obtenu comme la somme connexe de deux nœuds ou entrelacs non triviaux.
Nœud (mathématiques)En mathématiques, et plus particulièrement en géométrie et en topologie algébrique, un nœud est un plongement d'un cercle dans R, l'espace euclidien de dimension 3, considéré à des déformations continues près. Une différence essentielle entre les nœuds usuels et les nœuds mathématiques est que ces derniers sont fermés (sans extrémités permettant de les nouer ou de les dénouer) ; les propriétés physiques des nœuds réels, telles que la friction ou l'épaisseur des cordes, sont généralement également négligées.
Polynôme de JonesLe polynôme de Jones en théorie des nœuds est un invariant polynomial des nœuds (incomplet) introduit par Vaughan Jones en 1984. Plus précisément, c'est un invariant d'un nœud orienté ou d'un entrelacs orienté, qui est un polynôme de Laurent à coefficients entiers en la variable . Le polynôme de Jones est caractérisé par le fait qu'il prend la valeur 1 pour le nœud trivial et vérifie la « » (skein relation) suivante : où , et sont des diagrammes d'entrelacs orientés qui ne diffèrent que dans une petite région de la façon suivante center|200px Le polynôme de Jones, contrairement au polynôme d'Alexander, permet parfois de distinguer un nœud de son image par un miroir.
Surface de Seifertvignette|Une surface de Seifert associée à un entrelacs. Ce dernier, en traits orangés épais, est formé par trois cercles : ce sont les anneaux borroméens. La surface possède deux faces, en blanc et bleu sur l'image. En mathématiques, la surface de Seifert est un concept issu de la théorie des nœuds associée à un nœud ou plus généralement à un entrelacs. Il s'agit d'une surface ayant l'entrelacs pour bord et vérifiant un certain nombre de propriétés additionnelles garantissant sa simplicité (surface connexe, compacte et à l'orientation compatible avec celle de l'entrelacs).
Théorie des nœudsthumb|right|Représentation d’un nœud torique de type (3, 8). La théorie des nœuds est une branche de la topologie qui consiste en l'étude mathématique de courbes présentant des liaisons avec elles-mêmes, un « bout de ficelle » idéalisé en lacets. Elle est donc très proche de la théorie des tresses qui comporte plusieurs chemins ou « bouts de ficelle ». left|thumb|Nœuds triviaux La théorie des nœuds a commencé vers 1860 et avec des travaux de Carl Friedrich Gauss liés à l'électromagnétisme.
Knot groupIn mathematics, a knot is an embedding of a circle into 3-dimensional Euclidean space. The knot group of a knot K is defined as the fundamental group of the knot complement of K in R3, Other conventions consider knots to be embedded in the 3-sphere, in which case the knot group is the fundamental group of its complement in . Two equivalent knots have isomorphic knot groups, so the knot group is a knot invariant and can be used to distinguish between certain pairs of inequivalent knots.