Concepts associés (38)
Partie étoilée
En géométrie, une partie A d'un espace affine réel E est dite étoilée par rapport à un point a de A si, pour tout point x de A, le segment [a, x] est contenu dans A, c'est-à-dire que dans A, tout point peut être relié à a par un chemin rectiligne. Plus formellement, puisque le segment [a, x] est l'ensemble des barycentres à coefficients positifs des points a et x : une partie non vide A de E est étoilée par rapport à un point a de E si (Cette condition assure que a est forcément dans A.
Antimatroid
In mathematics, an antimatroid is a formal system that describes processes in which a set is built up by including elements one at a time, and in which an element, once available for inclusion, remains available until it is included. Antimatroids are commonly axiomatized in two equivalent ways, either as a set system modeling the possible states of such a process, or as a formal language modeling the different sequences in which elements may be included.
Calcul de l'enveloppe convexe
En algorithmique géométrique, le calcul de l'enveloppe convexe est un problème algorithmique. Il consiste, étant donné un ensemble de points, à calculer leur enveloppe convexe. L'enveloppe convexe d'un ensemble de points est le plus petit ensemble convexe qui les contient tous. C'est un polyèdre dont les sommets sont des points de l'ensemble. Le calcul de l'enveloppe convexe consiste à calculer une représentation compacte de l'enveloppe, le plus souvent les sommets de celle-ci.
Séparation et évaluation
Un algorithme par séparation et évaluation, ou branch and bound en anglais, est une méthode générique de résolution de problèmes d'optimisation combinatoire. Cet algorithme a été introduit par Ailsa Land et Alison Harcourt (Doig) en 1960. L'optimisation combinatoire consiste à trouver un point minimisant une fonction, appelée coût, dans un ensemble dénombrable. Une méthode naïve pour résoudre ce problème est d'énumérer toutes les solutions du problème, de calculer le coût pour chacune, puis de donner le minimum.
Orientation de courbe
En mathématiques, une courbe orientée positivement est une courbe fermée simple plane (c'est-à-dire une courbe dans le plan dont le point de départ est également le point final et qui n'a pas d'autres intersections propres) de telle sorte que lorsque l'on se déplace dessus, on a toujours la courbe intérieur à gauche (et par conséquent, la courbe extérieure à droite). Si dans la définition ci-dessus on échange gauche et droite, on obtient une courbe orientée négativement .
Théorème de Jordan
En mathématiques, le théorème de Jordan est un théorème de topologie plane. Il est célèbre par le caractère apparemment intuitif de son énoncé et la difficulté de sa démonstration. précise M. Dostal à son sujet. Si, à l'aide d'un crayon, on dessine une ligne continue (on ne lève pas le crayon) qui ne se croise pas et qui termine là où elle commence, la zone de la feuille non dessinée se décompose en deux parties, l'intérieur de la figure, qui est borné, et l'extérieur, qui ne le serait pas si la feuille ne l'était pas.
Ligne polygonale
vignette|Ligne brisée En mathématiques, une ligne polygonale ou une ligne brisée est une figure géométrique formée d’une suite de segments de droites reliant une suite de points. Une ligne brisée fermée constitue un polygone. En jargon informatique, notamment géomatique, une ligne polygonale est par apocope couramment nommée polyligne. Elle peut alors être formée de segments de droites ou de segments de courbes. Soient A, A, A, ... , A, n points (n ≥ 2) du plan affine euclidien usuel, ou d'un espace affine plus général.
Courbe convexe
In geometry, a convex curve is a plane curve that has a supporting line through each of its points. There are many other equivalent definitions of these curves, going back to Archimedes. Examples of convex curves include the convex polygons, the boundaries of convex sets, and the graphs of convex functions. Important subclasses of convex curves include the closed convex curves (the boundaries of bounded convex sets), the smooth curves that are convex, and the strictly convex curves, which have the additional property that each supporting line passes through a unique point of the curve.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.