Whittle likelihoodIn statistics, Whittle likelihood is an approximation to the likelihood function of a stationary Gaussian time series. It is named after the mathematician and statistician Peter Whittle, who introduced it in his PhD thesis in 1951. It is commonly used in time series analysis and signal processing for parameter estimation and signal detection. In a stationary Gaussian time series model, the likelihood function is (as usual in Gaussian models) a function of the associated mean and covariance parameters.
GretlGretl (GNU Regression, Econometrics and Time Series Library) est un logiciel de statistiques qui peut être utilisé en ligne de commande ou au travers d'une interface graphique. Outre l'anglais, Gretl est également disponible en grec, chinois, basque, catalan, tchèque, allemand, français, italien, albanais, polonais, portugais, russe, espagnol et turc. Gretl propose son propre format de données basé sur XML (entièrement documenté).
Partial autocorrelation functionIn time series analysis, the partial autocorrelation function (PACF) gives the partial correlation of a stationary time series with its own lagged values, regressed the values of the time series at all shorter lags. It contrasts with the autocorrelation function, which does not control for other lags. This function plays an important role in data analysis aimed at identifying the extent of the lag in an autoregressive (AR) model.
Lissage exponentielLe lissage exponentiel est une méthode empirique de lissage et de prévision de données chronologiques affectées d'aléas. Comme dans la méthode des moyennes mobiles, chaque donnée est lissée successivement en partant de la valeur initiale. Le lissage exponentiel donne aux observations passées un poids décroissant exponentiellement avec leur ancienneté. Le lissage exponentiel est une des méthodes de fenêtrage utilisées en traitement du signal. Elle agit comme un filtre passe-bas en supprimant les fréquences élevées du signal initial.
EViewsEViews is a statistical package for Windows, used mainly for time-series oriented econometric analysis. It is developed by Quantitative Micro Software (QMS), now a part of IHS. Version 1.0 was released in March 1994, and replaced MicroTSP. The TSP software and programming language had been originally developed by Robert Hall in 1965. The current version of EViews is 13, released in August 2022. EViews can be used for general statistical analysis and econometric analyses, such as cross-section and panel data analysis and time series estimation and forecasting.
Fractional Fourier transformIn mathematics, in the area of harmonic analysis, the fractional Fourier transform (FRFT) is a family of linear transformations generalizing the Fourier transform. It can be thought of as the Fourier transform to the n-th power, where n need not be an integer — thus, it can transform a function to any intermediate domain between time and frequency. Its applications range from filter design and signal analysis to phase retrieval and pattern recognition.
Heteroskedasticity-consistent standard errorsThe topic of heteroskedasticity-consistent (HC) standard errors arises in statistics and econometrics in the context of linear regression and time series analysis. These are also known as heteroskedasticity-robust standard errors (or simply robust standard errors), Eicker–Huber–White standard errors (also Huber–White standard errors or White standard errors), to recognize the contributions of Friedhelm Eicker, Peter J. Huber, and Halbert White.
Sinusoidal modelIn statistics, signal processing, and time series analysis, a sinusoidal model is used to approximate a sequence Yi to a sine function: where C is constant defining a mean level, α is an amplitude for the sine, ω is the angular frequency, Ti is a time variable, φ is the phase-shift, and Ei is the error sequence. This sinusoidal model can be fit using nonlinear least squares; to obtain a good fit, routines may require good starting values for the unknown parameters.
Causalité au sens de GrangerLa causalité a été introduite dans l'analyse économétrique par Wiener (1956) et Granger (1969). À l'origine, on retrouve la formalisation de la notion de causalité en physique, notamment dans les travaux d'Isaac Newton sur la force motrice (cause) et le changement de mouvement (effet). Dans ce cas, la notion de causalité traduit un principe d’après lequel si un phénomène est la cause d’un autre phénomène, nommé « effet », alors ce dernier ne peut pas précéder la cause.
Cross-sectional regressionIn statistics and econometrics, a cross-sectional regression is a type of regression in which the explained and explanatory variables are all associated with the same single period or point in time. This type of cross-sectional analysis is in contrast to a time-series regression or longitudinal regression in which the variables are considered to be associated with a sequence of points in time. For example, in economics a regression to explain and predict money demand (how much people choose to hold in the form of the most liquid assets) could be conducted with either cross-sectional or time series data.