Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit les principes fondamentaux de l'apprentissage statistique, couvrant l'apprentissage supervisé, la théorie de la décision, la minimisation des risques et l'ajustement excessif.
Explore le surajustement, la régularisation et la validation croisée dans l'apprentissage automatique, soulignant l'importance de l'expansion des fonctionnalités et des méthodes du noyau.
Couvre la régularisation dans les problèmes les moins carrés, favorisant des solutions optimales tout en s'attaquant à des défis comme la non-unité, le mauvais conditionnement et le sur-ajustement.
Couvre les bases de l'apprentissage automatique, l'apprentissage supervisé et non supervisé, diverses techniques comme les voisins k-nearest et les arbres de décision, et les défis de l'ajustement excessif.
Explore l'ergodicité géométrique dans les chaînes de Markov et le biais et la variance des estimateurs, en mettant en évidence la quantification des pertes d'efficacité.
Explore les mesures d'évaluation des modèles, les techniques de sélection, le compromis biais-variance et la gestion des distributions de données biaisées dans l'apprentissage automatique.