Ordinal analysisIn proof theory, ordinal analysis assigns ordinals (often large countable ordinals) to mathematical theories as a measure of their strength. If theories have the same proof-theoretic ordinal they are often equiconsistent, and if one theory has a larger proof-theoretic ordinal than another it can often prove the consistency of the second theory. The field of ordinal analysis was formed when Gerhard Gentzen in 1934 used cut elimination to prove, in modern terms, that the proof-theoretic ordinal of Peano arithmetic is ε0.
Théorème d'élimination des coupuresEn logique mathématique, le théorème d'élimination des coupures (ou Hauptsatz de Gentzen) est le résultat central établissant l'importance du calcul des séquents. Il a été initialement prouvé par Gerhard Gentzen en 1934 dans son article historique « Recherches sur la déduction logique » pour les systèmes LJ et LK formalisant la logique intuitionniste et classique, respectivement.
Programme de HilbertLe programme de Hilbert est un programme créé par David Hilbert dans le but d'assurer les fondements des mathématiques. Les conceptions scientifiques de David Hilbert ont une grande influence sur les mathématiciens de son époque. Hilbert s'oppose fermement au pessimisme scientifique prôné en particulier par le physiologiste Emil du Bois-Reymond, pour qui il est des questions en sciences qui resteront toujours sans réponse, une doctrine connue sous le nom d'« Ignorabimus » (du latin ignoramus et ignorabimus : « Nous ne savons pas et nous ne saurons jamais »).
Grand ordinal dénombrableEn mathématiques, et plus particulièrement en théorie des ensembles, il existe de nombreuses méthodes de description des ordinaux dénombrables. Les plus petits (jusqu'à ε0) peuvent être exprimés (de façon utile et non circulaire) à l'aide de leur forme normale de Cantor. Au-delà, on parle de grands ordinaux dénombrables ; de nombreux grands ordinaux (le plus souvent en rapport avec la théorie de la démonstration) possèdent des notations ordinales calculables.
Primitive recursive arithmeticPrimitive recursive arithmetic (PRA) is a quantifier-free formalization of the natural numbers. It was first proposed by Norwegian mathematician , as a formalization of his finitistic conception of the foundations of arithmetic, and it is widely agreed that all reasoning of PRA is finitistic. Many also believe that all of finitism is captured by PRA, but others believe finitism can be extended to forms of recursion beyond primitive recursion, up to ε0, which is the proof-theoretic ordinal of Peano arithmetic.
Arithmétique de RobinsonL'arithmétique de Robinson introduite en 1950 par Raphael Robinson est une théorie du premier ordre pour l'arithmétique des entiers naturels, qui est finiment axiomatisable. Ses axiomes sont essentiellement ceux de l'arithmétique de Peano sans le schéma d'axiomes de récurrence. L'arithmétique de Robinson suffit pour le théorème d'incomplétude de Gödel-Rosser et pour le théorème de Church (indécidabilité du problème de la décision), au sens où l'arithmétique de Robinson, et même toute théorie axiomatique dans le langage de l'arithmétique qui est récursive et cohérente et qui a pour conséquence les axiomes de l'arithmétique de Robinson, est nécessairement incomplète et indécidable.
Théorème de GoodsteinEn mathématiques, et plus précisément en logique mathématique, le 'théorème de Goodstein' est un énoncé arithmétique portant sur des suites, dites suites de Goodstein. Les suites de Goodstein sont des suites d'entiers à la croissance initiale extrêmement rapide, et le théorème établit que (en dépit des apparences) toute suite de Goodstein se termine par 0. Il doit son nom à son auteur, le mathématicien et logicien Reuben Goodstein.
Quantification (logique)vignette|Symboles mathématiques des deux quantificateurs logiques les plus courants.|236px En mathématiques, les expressions « pour tout » (ou « quel que soit ») et « il existe », utilisées pour formuler des propositions mathématiques dans le calcul des prédicats, sont appelées des quantifications. Les symboles qui les représentent en langage formel sont appelés des quantificateurs (ou autrefois des quanteurs). La quantification universelle (« pour tout ... » ou « quel que soit ... ») se dénote par le symbole ∀ (un A à l'envers).
Arithmétique de PresburgerEn logique mathématique, l'arithmétique de Presburger est la théorie du premier ordre des nombres entiers naturels munis de l'addition. Elle a été introduite en 1929 par Mojżesz Presburger. Il s'agit de l'arithmétique de Peano sans la multiplication, c’est-à-dire avec seulement l'addition, en plus du zéro et de l'opération successeur. Contrairement à l'arithmétique de Peano, l'arithmétique de Presburger est décidable. Cela signifie qu'il existe un algorithme qui détermine si un énoncé du langage de l'arithmétique de Presburger est démontrable à partir des axiomes de l'arithmétique de Presburger.
Nombre epsilonEn mathématiques, les nombres epsilon sont une collection de nombres transfinis définis par la propriété d'être des points fixes d'une application exponentielle. Ils ne peuvent donc pas être atteints à partir de 0 et d'un nombre fini d'exponentiations (et d'opérations « plus faibles », comme l'addition et la multiplication). La forme de base fut introduite par Georg Cantor dans le contexte du calcul sur les ordinaux comme étant les ordinaux ε satisfaisant l'équation où ω est le plus petit ordinal infini ; une extension aux nombres surréels a été découverte par John Horton Conway.