Notation for differentiationIn differential calculus, there is no single uniform notation for differentiation. Instead, various notations for the derivative of a function or variable have been proposed by various mathematicians. The usefulness of each notation varies with the context, and it is sometimes advantageous to use more than one notation in a given context. The most common notations for differentiation (and its opposite operation, the antidifferentiation or indefinite integration) are listed below.
Differential (mathematics)In mathematics, differential refers to several related notions derived from the early days of calculus, put on a rigorous footing, such as infinitesimal differences and the derivatives of functions. The term is used in various branches of mathematics such as calculus, differential geometry, algebraic geometry and algebraic topology. The term differential is used nonrigorously in calculus to refer to an infinitesimal ("infinitely small") change in some varying quantity.
Intégration par changement de variableEn mathématiques, et plus précisément en analyse, l’intégration par changement de variable est un procédé d'intégration qui consiste à considérer une nouvelle variable d'intégration, pour remplacer une fonction de la variable d'intégration initiale. Ce procédé est un des outils principaux pour le calcul explicite d'intégrales. Il est parfois appelé intégration par substitution en lien avec le nom anglais du procédé. Soient : I un intervalle réel ; φ : [a,b] → I une fonction dérivable, de dérivée intégrable ; f : I → R une fonction continue.
Règle du produitEn analyse mathématique, la règle du produit, aussi appelée règle de Leibniz, est une formule utilisée afin de trouver les dérivées de produits de fonctions. Sous sa forme la plus simple, elle s'énonce ainsi : En notation de Leibniz, cette formule s'écrit : Une application importante de la règle du produit est la méthode d'intégration par parties. Soit la fonction définie par : Pour trouver sa dérivée avec la règle du produit, on pose et . Les fonctions , et sont partout dérivables car polynomiales.
Longueur d'un arcthumb|Camille Jordan est l'auteur de la définition la plus courante de la longueur d'un arc. En géométrie, la question de la longueur d'un arc est simple à concevoir (intuitive). L'idée d'arc correspond à celle d'une ligne, ou d'une trajectoire d'un point dans un plan ou l'espace par exemple. Sa longueur peut être vue comme la distance parcourue par un point matériel suivant cette trajectoire ou encore comme la longueur d'un fil prenant exactement la place de cette ligne. La longueur d'un arc est, soit un nombre positif, soit l'infini.
DifférentielleEn analyse fonctionnelle et vectorielle, on appelle différentielle d'ordre 1 d'une fonction en un point (ou dérivée de cette fonction au point ) la partie linéaire de l'accroissement de cette fonction entre et lorsque tend vers 0. Elle généralise aux fonctions de plusieurs variables la notion de nombre dérivé d'une fonction d'une variable réelle, et permet ainsi d'étendre celle de développements limités. Cette différentielle n'existe pas toujours, et une fonction possédant une différentielle en un point est dite différentiable en ce point.