Introduit Manopt, une boîte à outils pour l'optimisation sur les manifolds, couvrant le gradient et les contrôles hessiens, les appels de solveur et la mise en cache manuelle.
Explore les raisons de l'abondance des points de selle dans l'optimisation de l'apprentissage en profondeur, en mettant l'accent sur les arguments statistiques et géométriques.
Couvre les équations différentielles partielles, les Hessiens, et le Théorème de la fonction implicite, avec un accent sur la résolution des questions d'examen.