Entropie différentielleDifferential entropy (also referred to as continuous entropy) is a concept in information theory that began as an attempt by Claude Shannon to extend the idea of (Shannon) entropy, a measure of average (surprisal) of a random variable, to continuous probability distributions. Unfortunately, Shannon did not derive this formula, and rather just assumed it was the correct continuous analogue of discrete entropy, but it is not. The actual continuous version of discrete entropy is the limiting density of discrete points (LDDP).
Hartley (unit)The hartley (symbol Hart), also called a ban, or a dit (short for decimal digit), is a logarithmic unit that measures information or entropy, based on base 10 logarithms and powers of 10. One hartley is the information content of an event if the probability of that event occurring is . It is therefore equal to the information contained in one decimal digit (or dit), assuming a priori equiprobability of each possible value. It is named after Ralph Hartley.
Information contentIn information theory, the information content, self-information, surprisal, or Shannon information is a basic quantity derived from the probability of a particular event occurring from a random variable. It can be thought of as an alternative way of expressing probability, much like odds or log-odds, but which has particular mathematical advantages in the setting of information theory. The Shannon information can be interpreted as quantifying the level of "surprise" of a particular outcome.
A Mathematical Theory of CommunicationA Mathematical Theory of Communication, paru en 1948, est un article du mathématicien américain Claude Shannon qui a fondé la théorie de l'information. Shannon l'a aussi publié comme partie du livre : The Mathematical Theory of Communication, où son texte, inchangé, est précédé d'un chapitre de Warren Weaver. L'article A Mathematical Theory of Communication est publié en deux parties en 1948, dans les numéros de juillet et d'octobre du Bell System Technical Journal.
Entropie conditionnelleEn théorie de l'information, l'entropie conditionnelle décrit la quantité d'information nécessaire pour connaitre le comportement d'une variable aléatoire , lorsque l'on connait exactement une variable aléatoire . On note l'entropie conditionnelle de sachant . On dit aussi parfois entropie de conditionnée par . Comme les autres entropies, elle se mesure généralement en bits. On peut introduire l'entropie conditionnelle de plusieurs façons, soit directement à partir des probabilités conditionnelles, soit en passant par l'entropie conjointe.
Unité de mesure en informatiqueLes unités de mesure suivantes sont utilisées en informatique pour quantifier la taille de la mémoire d'un dispositif numérique (ordinateur, Baladeur numérique), l'espace utilisable sur un disque dur, une clé USB, la taille d'un fichier, d'un répertoire ou autre.
Entropie de ShannonEn théorie de l'information, l'entropie de Shannon, ou plus simplement entropie, est une fonction mathématique qui, intuitivement, correspond à la quantité d'information contenue ou délivrée par une source d'information. Cette source peut être un texte écrit dans une langue donnée, un signal électrique ou encore un fichier informatique quelconque (suite d'octets). Elle a été introduite par Claude Shannon. Du point de vue d'un récepteur, plus la source émet d'informations différentes, plus l'entropie (ou incertitude sur ce que la source émet) est grande.
Information mutuelleDans la théorie des probabilités et la théorie de l'information, l'information mutuelle de deux variables aléatoires est une quantité mesurant la dépendance statistique de ces variables. Elle se mesure souvent en bit. L'information mutuelle d'un couple de variables représente leur degré de dépendance au sens probabiliste. Ce concept de dépendance logique ne doit pas être confondu avec celui de causalité physique, bien qu'en pratique l'un implique souvent l'autre.
Échelle logarithmiqueUne échelle logarithmique est un système de graduation en progression géométrique. Chaque pas multiplie la valeur par une constante positive. De ce fait, la position sur l'axe d'une valeur est proportionnelle à son logarithme. Une échelle logarithmique est particulièrement adaptée pour rendre compte des ordres de grandeur dans les applications. Elle montre sur un petit espace une large gamme de valeurs, à condition qu'elles soient non nulles et de même signe.
Capacité d'un canalLa capacité d'un canal, en génie électrique, en informatique et en théorie de l'information, est la limite supérieure étroite du débit auquel l'information peut être transmise de manière fiable sur un canal de communication. Suivant les termes du théorème de codage du canal bruyant, la capacité d'un canal donné est le débit d'information le plus élevé (en unités d'information par unité de temps) qui peut être atteint avec une probabilité d'erreur arbitrairement faible. La théorie de l'information, développée par Claude E.