Porte quantiqueEn informatique quantique, et plus précisément dans le modèle de de calcul, une porte quantique (ou porte logique quantique) est un circuit quantique élémentaire opérant sur un petit nombre de qubits. Les portes quantiques sont les briques de base des circuits quantiques, comme le sont les portes logiques classiques pour des circuits numériques classiques. Contrairement à de nombreuses portes logiques classiques, les portes logiques quantique sont « réversibles ».
Logarithme discretLe logarithme discret est un objet mathématique utilisé en cryptologie. C'est l'analogue du logarithme réel qui est la réciproque de l'exponentielle, mais dans un groupe cyclique G fini. Le logarithme discret est utilisé pour la cryptographie à clé publique, typiquement dans l'échange de clés Diffie-Hellman et le chiffrement El Gamal.
Quantum algorithmIn quantum computing, a quantum algorithm is an algorithm which runs on a realistic model of quantum computation, the most commonly used model being the quantum circuit model of computation. A classical (or non-quantum) algorithm is a finite sequence of instructions, or a step-by-step procedure for solving a problem, where each step or instruction can be performed on a classical computer. Similarly, a quantum algorithm is a step-by-step procedure, where each of the steps can be performed on a quantum computer.
Transformée de Fourier quantiqueEn informatique quantique, la transformée de Fourier quantique (TFQ) est une transformation linéaire sur des bits quantiques, et est l'analogie quantique de la transformée de Fourier discrète. La transformée de Fourier quantique est l'un des nombreux algorithmes quantiques, qui incluent notamment l'algorithme de Shor qui permet de factoriser et de calculer le logarithme discret, l'algorithme d'estimation de phase quantique qui estime les valeurs propres d'un opérateur unitaire et les algorithmes traitant du problème de sous-groupe caché .
Test de primalitévignette|Le 39e nombre premier de Mersenne découvert à ce jour pour un article sur la primalité Un test de primalité est un algorithme permettant de savoir si un nombre entier est premier. Le test le plus simple est celui des divisions successives : pour tester N, on vérifie s’il est divisible par l’un des entiers compris au sens large entre 2 et N-1. Si la réponse est négative, alors N est premier, sinon il est composé.
Crible quadratiqueL'algorithme du crible quadratique est un algorithme de factorisation fondé sur l'arithmétique modulaire. C'est en pratique le plus rapide après le crible général des corps de nombres, lequel est cependant bien plus compliqué, et n'est plus performant que pour factoriser un nombre entier d'au moins cent chiffres. Le crible quadratique est un algorithme de factorisation non spécialisé, c'est-à-dire que son temps d'exécution dépend uniquement de la taille de l'entier à factoriser, et non de propriétés particulières de celui-ci.
Algorithme d'estimation de phase quantiqueEn informatique quantique, l’algorithme d'estimation de phase quantique est un permettant d'estimer la valeur propre (ou sa phase, ce qui, dans ce cas précis, est équivalent) d'un opérateur unité associée à un vecteur propre donné. Les valeurs propres d'un opérateur unitaire U, agissant sur m bits, sont de module 1. Si est un vecteur propre de U, nous avons donc . Le but de cet algorithme est de trouver la valeur de la phase correspondant à un vecteur propre donné, ceci avec une précision de n bits (la phase n'a pas nécessairement une valeur exacte).
Hidden subgroup problemThe hidden subgroup problem (HSP) is a topic of research in mathematics and theoretical computer science. The framework captures problems such as factoring, discrete logarithm, graph isomorphism, and the shortest vector problem. This makes it especially important in the theory of quantum computing because Shor's quantum algorithm for factoring is an instance of the hidden subgroup problem for finite Abelian groups, while the other problems correspond to finite groups that are not Abelian.
Classe de complexitéEn informatique théorique, et plus précisément en théorie de la complexité, une classe de complexité est un ensemble de problèmes algorithmiques dont la résolution nécessite la même quantité d'une certaine ressource. Une classe est souvent définie comme l'ensemble de tous les problèmes qui peuvent être résolus sur un modèle de calcul M, utilisant une quantité de ressources du type R, où n, est la taille de l'entrée. Les classes les plus usuelles sont celles définies sur des machines de Turing, avec des contraintes de temps de calcul ou d'espace.
Algorithme de GroverEn informatique quantique, l’algorithme de Grover est un algorithme de recherche, permettant de rechercher un ou plusieurs éléments qui répondent à un critère donné parmi éléments non classés en temps proportionnel à et avec un espace de stockage proportionnel à . Il a été découvert par Lov Grover en 1996. Dans les mêmes conditions (recherche parmi des éléments non classés), un algorithme classique ne peut faire mieux qu'une recherche dans un temps proportionnel à , en testant successivement le critère sur chaque élément.