Mécanique quantique dans l'espace des phasesLa formulation de la mécanique quantique dans l'espace des phases place les variables de position et d'impulsion sur un pied d'égalité dans l'espace des phases. En revanche, la représentation de Schrödinger utilise soit la représentation dans l'espace des positions, soit la représentation dans celui des impulsions (voir la page espace des positions et des impulsions).
Variété de PoissonEn géométrie, une structure de Poisson sur une variété différentielle est un crochet de Lie (appelé crochet de Poisson dans ce cas) sur l'algèbre des fonctions lisses de à valeurs réelles, vérifiant formule de Leibniz En d'autres termes, une structure de Poisson est structure d'algèbre de Lie sur l'espace vectoriel des fonctions lisses sur de sorte que est un champ de vecteurs pour toute fonction lisse , appelé champ de vecteurs hamiltonien associé à . Soit une variété différentielle.
Moyal productIn mathematics, the Moyal product (after José Enrique Moyal; also called the star product or Weyl–Groenewold product, after Hermann Weyl and Hilbrand J. Groenewold) is an example of a phase-space star product. It is an associative, non-commutative product, , on the functions on R2n, equipped with its Poisson bracket (with a generalization to symplectic manifolds, described below). It is a special case of the -product of the "algebra of symbols" of a universal enveloping algebra.
Limite classiqueLa limite classique ou limite de correspondance est la capacité d'une théorie physique à retrouver pour certaines valeurs de ses paramètres les principes et résultats de la physique classique, c'est-à-dire la physique élaborée jusqu'à la fin du . La limite classique est utilisée avec des théories physiques qui prédisent un comportement non classique ; l'exemple le plus connu est la mécanique quantique, dont les grandeurs caractéristiques font toujours intervenir la constante de Planck ; sa limite classique est donc le plus souvent associée à la limite .
Groupe de HeisenbergEn mathématiques, le groupe de Heisenberg d'un anneau unifère A (non nécessairement commutatif) est le groupe multiplicatif des matrices triangulaires supérieures de taille 3 à coefficients dans A et dont les éléments diagonaux sont égaux au neutre multiplicatif de l'anneau : Originellement, l'anneau A choisi par Werner Heisenberg était le corps R des réels. Le « groupe de Heisenberg continu », , lui a permis d'expliquer, en mécanique quantique, l'équivalence entre la représentation de Heisenberg et celle de Schrödinger.
Quantifications canoniquesEn physique, la quantification canonique est une procédure pour quantifier une théorie classique, tout en essayant de préserver au maximum la structure formelle, comme les symétries, de la théorie classique. Historiquement, ce n'était pas tout à fait la voie de Werner Heisenberg pour obtenir la mécanique quantique, mais Paul Dirac l'a introduite dans sa thèse de doctorat de 1926, la «méthode de l'analogie classique» pour la quantification, et l'a détaillée dans son texte classique.