Module platLa notion de module plat a été introduite et utilisée, en géométrie algébrique, par Jean-Pierre Serre. Cette notion se trouve également dans un ouvrage contemporain d'Henri Cartan et Samuel Eilenberg en algèbre homologique. Elle généralise les modules projectifs et a fortiori les modules libres. En algèbre commutative et en géométrie algébrique, cette notion a été notamment exploitée par Alexander Grothendieck et son école, et s'est révélée d'une importance considérable.
Lie algebra cohomologyIn mathematics, Lie algebra cohomology is a cohomology theory for Lie algebras. It was first introduced in 1929 by Élie Cartan to study the topology of Lie groups and homogeneous spaces by relating cohomological methods of Georges de Rham to properties of the Lie algebra. It was later extended by to coefficients in an arbitrary Lie module. If is a compact simply connected Lie group, then it is determined by its Lie algebra, so it should be possible to calculate its cohomology from the Lie algebra.
Homologie des groupesEn algèbre homologique, l'homologie d'un groupe est un invariant attaché à ce groupe. Pour un groupe G, on note Z[G] l'algèbre du groupe G sur l'anneau des entiers relatifs Z. Soient alors M un Z[G]-module (ce qui revient à se donner un groupe abélien M et un morphisme de G dans le groupe des automorphismes de M), et une résolution projective de M. Les groupes d'homologie de G à coefficients dans M sont définis par : De façon duale les groupes de cohomologie de G à coefficients dans M sont définis par : où est une résolution injective de M.
Schéma (géométrie algébrique)En mathématiques, les schémas sont les objets de base de la géométrie algébrique, généralisant la notion de variété algébrique de plusieurs façons, telles que la prise en compte des multiplicités, l'unicité des points génériques et le fait d'autoriser des équations à coefficients dans un anneau commutatif quelconque.
Injective objectIn mathematics, especially in the field of , the concept of injective object is a generalization of the concept of injective module. This concept is important in cohomology, in homotopy theory and in the theory of . The dual notion is that of a projective object. An in a is said to be injective if for every monomorphism and every morphism there exists a morphism extending to , i.e. such that . That is, every morphism factors through every monomorphism . The morphism in the above definition is not required to be uniquely determined by and .
BimoduleIn abstract algebra, a bimodule is an abelian group that is both a left and a right module, such that the left and right multiplications are compatible. Besides appearing naturally in many parts of mathematics, bimodules play a clarifying role, in the sense that many of the relationships between left and right modules become simpler when they are expressed in terms of bimodules. If R and S are two rings, then an R-S-bimodule is an abelian group such that: M is a left R-module and a right S-module.
Direct image functorIn mathematics, the direct image functor is a construction in sheaf theory that generalizes the global sections functor to the relative case. It is of fundamental importance in topology and algebraic geometry. Given a sheaf F defined on a topological space X and a continuous map f: X → Y, we can define a new sheaf f∗F on Y, called the direct image sheaf or the pushforward sheaf of F along f, such that the global sections of f∗F is given by the global sections of F.
Catégorie abélienneEn mathématiques, les catégories abéliennes forment une famille de catégories qui contient celle des groupes abéliens. Leur étude systématique a été instituée par Alexandre Grothendieck pour éclairer les liens qui existent entre différentes théories cohomologiques, comme la cohomologie des faisceaux ou la cohomologie des groupes. Toute catégorie abélienne est additive. Une catégorie abélienne est une catégorie additive dans laquelle on peut additionner les flèches et définir pour toute flèche les notions de noyau, conoyau et .
Cohomologie de De RhamEn mathématiques, la cohomologie de De Rham est un outil de topologie différentielle, c'est-à-dire adapté à l'étude des variétés différentielles. Il s'agit d'une théorie cohomologique fondée sur des propriétés algébriques des espaces de formes différentielles sur la variété. Elle porte le nom du mathématicien Georges de Rham. Le affirme que le morphisme naturel, de la cohomologie de De Rham d'une variété différentielle vers sa cohomologie singulière à coefficients réels, est bijectif.
Module injectifEn mathématiques, et plus spécifiquement en algèbre homologique, un module injectif est un module Q (à gauche par exemple) sur un anneau A tel que pour tout morphisme injectif f : X → Y entre deux A-modules (à gauche) et pour tout morphisme g : X → Q, il existe un morphisme h : Y → Q tel que hf = g, c'est-à-dire tel que le diagramme suivant commute : center Autrement dit : Q est injectif si pour tout module Y, tout morphisme d'un sous-module de Y vers Q s'étend à Y.