Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'entropie, le caractère aléatoire et la quantification de l'information dans l'analyse des données biologiques, y compris les neurosciences et la prédiction de la structure des protéines.
Couvre la prédiction du contact avec les protéines à l'aide des modèles Potts et des méthodes de pseudo-probabilité, en comparant différentes approches pour la prédiction du contact dans les protéines.
Explore la prédiction de la structure des protéines à partir des données de séquence en utilisant la modélisation de l'entropie maximale et discute des progrès récents dans la prédiction de la structure des protéines.
Explore les réseaux d'interaction protéines-protéines, l'importance de la liaison, les approches expérimentales, l'identification des cibles médicamenteuses et la construction de réseaux.
Se penche sur la prédiction de la structure des protéines grâce à l'analyse des contacts avec les acides aminés et à des méthodes informatiques avancées.
Il s'agit d'analyser la coévolution des résidus dans les familles de protéines afin de saisir les contacts indigènes et de prédire la proximité spatiale et les interactions protéiques.