Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Présente l'estimateur de Bayes, expliquant sa définition, son application dans des scénarios de coûts quadratiques et son importance dans le raisonnement probabiliste.
Introduit des bases de régression linéaire du point de vue de la minimisation empirique des risques, couvrant la perte carrée, le prétraitement des données et le calcul du gradient.
Explore les régressions paramétriques, en mettant l'accent sur la simplicité et la complexité des compromis de régression linéaire entre les modèles paramétriques et non paramétriques.
Explore les algorithmes d'optimisation composite, y compris les opérateurs proximaux et les méthodes de gradient, avec des exemples et des limites théoriques.
Explore l'impact du bruit de gradient sur les algorithmes d'optimisation, en se concentrant sur les fonctions de risque lisses et non lisses et la dérivation des moments de bruit de gradient.
Explore l'optimisation stochastique de la gestion de portefeuille, en mettant l'accent sur les critères de décision pour des objectifs incertains et le concept de la valeur conditionnelle à risque.