In dynamical systems theory, a period-doubling bifurcation occurs when a slight change in a system's parameters causes a new periodic trajectory to emerge from an existing periodic trajectory—the new one having double the period of the original. With the doubled period, it takes twice as long (or, in a discrete dynamical system, twice as many iterations) for the numerical values visited by the system to repeat themselves.
A period-halving bifurcation occurs when a system switches to a new behavior with half the period of the original system.
A period-doubling cascade is an infinite sequence of period-doubling bifurcations. Such cascades are a common route by which dynamical systems develop chaos. In hydrodynamics, they are one of the possible routes to turbulence.
The logistic map is
where is a function of the (discrete) time . The parameter is assumed to lie in the interval , in which case is bounded on .
For between 1 and 3, converges to the stable fixed point . Then, for between 3 and 3.44949, converges to a permanent oscillation between two values and that depend on . As grows larger, oscillations between 4 values, then 8, 16, 32, etc. appear. These period doublings culminate at , beyond which more complex regimes appear. As increases, there are some intervals where most starting values will converge to one or a small number of stable oscillations, such as near .
In the interval where the period is for some positive integer , not all the points actually have period . These are single points, rather than intervals. These points are said to be in unstable orbits, since nearby points do not approach the same orbit as them.
Real version of complex quadratic map is related with real slice of the Mandelbrot set.
Feigenbaum stretch.png|Period-doubling cascade in an exponential mapping of the [[Mandelbrot set]]
Bifurcation diagram of complex quadratic map.png| 1D version with an exponential mapping
Bifurcation1-2.png|period doubling bifurcation
The Kuramoto–Sivashinsky equation is an example of a spatiotemporally continuous dynamical system that exhibits period doubling.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Fournit un aperçu du modèle Kuramoto généralisé, y compris les fréquences naturelles, le couplage tout-à-tout, les diagrammes de bifurcation et les systèmes de diffusion.
This course focuses on the physical mechanisms at the origin of the transition of a flow from laminar to turbulent using the hydrodynamic instability theory.
The course provides students with the tools to approach the study of nonlinear systems and chaotic dynamics. Emphasis is given to concrete examples and numerical applications are carried out during th
Linear and nonlinear dynamical systems are found in all fields of science and engineering. After a short review of linear system theory, the class will explain and develop the main tools for the quali
La théorie des bifurcations, en mathématiques et en physique est l'étude de certains aspects des systèmes dynamiques. Une bifurcation intervient lorsqu'un petit changement d'un paramètre physique produit un changement majeur dans l'organisation du système. Des exemples classiques d'une bifurcation en sciences pures sont par exemple les rythmes circadiens de populations animales en biologie théorique et les solutions de météo en mathématique et physique non linéaire, en sciences de l'ingénieur il y a aussi le flambage d'une poutre élastique (l'expérience peut être faite avec une règle d'écolier) ou les transitions de phase de matériaux (température critique de bifurcation, concentration critique).
En mathématiques, les nombres de Feigenbaum ou constantes de Feigenbaum sont deux nombres réels découverts par le mathématicien Mitchell Feigenbaum en 1975. Tous deux expriment des rapports apparaissant dans les diagrammes de bifurcation de la théorie du chaos. vignette|droite|Exemple de diagramme de bifurcation (en abscisse, r désigne le paramètre μ). Les diagrammes de bifurcation concernent les valeurs limites prises par les suites de type où f est une fonction réelle, définie positive et trois fois dérivable sur [0, 1] et possédant un maximum unique sur cet intervalle (c’est-à-dire sans maximum relatif), noté f.
droite|vignette|Diagramme de bifurcation de la suite logistique. En mathématiques, et en particulier dans l'étude des systèmes dynamiques, un diagramme de bifurcation illustre les valeurs visitées asymptotiquement (points fixes, points périodiques, attracteurs chaotiques) par un système en fonction d'un paramètre. Fichier:Bifurcation DiagramB.png|Diagramme de bifurcation pour l'[[attracteur de Rössler]]. Fichier:Henon bifurcation map b=0.3.png|Diagramme de bifurcation pour l'[[attracteur de Hénon]].
Some implications of absolute geometries in the description of complex systems dynamics, at various scale resolutions are highlighted. In such context, by means of an analytic geometry of 2 x 2 matrices, a generalization of the standard velocities space in ...
UNIV POLITEHNICA BUCHAREST, SCI BULL2023
,
We study the stability of laminar wakes past three-dimensional rectangular prisms. The width-to-height ratio is set to W/H = 1.2, while the length-to-height ratio 1/6 < L/H < 3 covers a wide range of geometries from thin plates to elongated Ahmed bodies. F ...
CAMBRIDGE UNIV PRESS2023
, , ,
Although the importance of studying channel bifurcations is widely recognised, their hydraulic behaviour in shallow, rough mountain rivers has so far received little attention from researchers. Understanding the specific hydraulics of such units is essenti ...