Explore la cohérence et les propriétés asymptotiques de l’estimateur de vraisemblance maximale, y compris les défis à relever pour prouver sa cohérence et construire des estimateurs de type MLE.
Introduit une estimation de vraisemblance maximale en économétrie, couvrant les principes, les propriétés, les applications et les tests de spécification.
Couvre le test du rapport de vraisemblance dans les modèles de choix, en comparant des modèles illimités et restreints par l'analyse comparative et l'essai de différentes spécifications du modèle.
Explore les modèles de mélange gaussien pour la classification des données, en mettant l'accent sur la dénigrement des signaux et l'estimation des données originales à l'aide des approches de probabilité et a posteriori.