Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la théorie des modèles linéaires généralisés, y compris la logistique et la régression de Poisson, lévaluation des modèles et les tests de coefficient.
Couvre les types de détecteurs, les statistiques de comptage, la prédiction des erreurs et l'estimation de l'incertitude dans les mesures, en soulignant l'importance des tests statistiques et l'optimisation des expériences.
Explore lutilisation des modèles de mélange gaussien pour la transition du clustering à la classification, couvrant la classification binaire, lestimation des paramètres et le classificateur Bayes optimal.
Couvre les techniques de simulation stochastique et de réduction de la variance, en se concentrant sur la génération de distributions variables et auxiliaires de Courra.
Couvre les modèles d'apprentissage statistique, la minimisation des risques et la minimisation empirique des risques avec des exemples d'estimateurs de probabilité maximale.