Concepts associés (19)
Bijection réciproque
En mathématiques, la bijection réciproque (ou fonction réciproque ou réciproque) d'une bijection est l'application qui associe à chaque élément de l'ensemble d'arrivée son unique antécédent par . Elle se note . On considère l'application de vers définie par . Pour chaque réel y, il y a un et un seul réel x tel que , ainsi pour = 8, le seul convenable est 2, en revanche, pour = –27 c'est –3. En termes mathématiques, on dit que est l'unique antécédent de et que est une bijection.
Ensemble
vignette|Ensemble de polygones dans un diagramme d'Euler En mathématiques, un ensemble désigne intuitivement un rassemblement d’objets distincts (les éléments de l'ensemble), « une multitude qui peut être comprise comme une totalité » pour paraphraser Georg Cantor qui est à l'origine de la théorie des ensembles. Dans une approche axiomatique, la théorie des ensembles est une théorie de l'appartenance (un élément d'un ensemble est dit « appartenir » à cet ensemble).
Singleton (mathématiques)
En mathématiques, un singleton est un ensemble qui comprend exactement un élément. Le singleton dont l'élément est a se note . Soit S une classe définie par une fonction indicatrice alors S est un singleton si et seulement s’il existe y ∈ X tel que pour tout x ∈ X, La définition suivante vient de Alfred North Whitehead et Russell Le symbole ι'x désigne le singleton {x} et désigne la classe des objets identiques à x, soit l'ensemble {y / y = x}.
Image (mathématiques)
En mathématiques, la notion d’image est reliée à la notion d’application avec plusieurs définitions distinctes. Étant donné une application : pour tout élément x de E, l’unique élément qui lui est relié dans F est appelé image de x par f, et dans ce cas on dit que x est un antécédent de par f ; l’ensemble des images des éléments de E est appelé de f, ou simplement image de f, et se note ; vignette|f(X) est en jaune.
Appartenance (mathématiques)
vignette|Le symbole de l'appartenance. En mathématique ensembliste, l’ est une relation entre un élément et un ensemble, et également par abus de notations une relation entre un objet et une classe. On écrit pour signifier que l'élément appartient à l'ensemble , ou que l'objet appartient à la classe . L'axiome d'extensionnalité donne un rôle important à la relation d'appartenance, car elle permet de caractériser un ensemble par les éléments qui lui appartiennent.
Catégorie des ensembles
En mathématiques, plus précisément en théorie des catégories, la catégorie des ensembles, notée Set ou Ens, est la catégorie dont les objets sont les ensembles, et dont les morphismes sont les applications d'un ensemble dans un autre. Sa définition est motivée par le fait qu'en théorie des ensembles usuelle, il n'existe pas d'« ensemble de tous les ensembles », car l'existence d'un tel objet résulterait en une contradiction logique : le paradoxe de Russell.
Image d'une application
vignette| est une fonction de dans . L'ovale jaune dans est l'image de . On appelle image d'une application f (d'un ensemble A vers un ensemble B) l' par f de l'ensemble de départ A. C'est donc le sous-ensemble de B contenant les de tous les éléments de A, et uniquement ces images. On le note Im(f). Exemple : Une application est surjective si et seulement si son image coïncide avec son ensemble d'arrivée. Lemme des noyaux Catégorie abélienne Limite projective Noyau (algèbre) (autrement dit : d'une relation
Ensemble de définition
En mathématiques, l'ensemble de définition (également appelé domaine de définition ou parfois ensemble de départ, voir la discussion plus bas) d'une application ou d'une fonction désigne informellement l'ensemble des entrées acceptées par elle. La terminologie entre ensemble de définition et ensemble de départ diffère si l'on fait la distinction entre la notion de fonction et d'application ou non.
Injection canonique
In mathematics, if is a subset of then the inclusion map (also inclusion function, insertion, or canonical injection) is the function that sends each element of to treated as an element of A "hooked arrow" () is sometimes used in place of the function arrow above to denote an inclusion map; thus: (However, some authors use this hooked arrow for any embedding.) This and other analogous injective functions from substructures are sometimes called natural injections.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.