Graphe aléatoirevignette|Graphe orienté aléatoire avec 20 nœuds et une probabilité de présence d'arête égale à 0,1. En mathématiques, un graphe aléatoire est un graphe généré par un processus aléatoire. Le premier modèle de graphes aléatoires a été popularisé par Paul Erdős et Alfréd Rényi dans une série d'articles publiés entre 1959 et 1968. Il y a deux modèles d'Erdős et Rényi, formellement différents, mais étroitement liés : le graphe aléatoire binomial et le graphe aléatoire uniforme.
Auto-organisationL'auto-organisation ou autoorganisation est un phénomène par lequel un système s'organise lui-même. Les systèmes physiques, biologiques ou écologiques, sociaux, ont tendance à s'organiser d'eux-mêmes. Il s'agit soit de l'organisation initiale du système lors de son émergence spontanée, soit lorsque le système existe déjà de l'apparition d'une organisation plus ou complexe. L'auto-organisation agit ainsi à l'encontre de l'entropie (on parle alors de néguentropie), qui est une mesure de désordre.
Système complexe adaptatifUn système complexe adaptatif ou système complexe auto-adaptatif est l'ensemble des cas particuliers d'un système complexe capable de s'adapter à son environnement par des expériences d'apprentissage. Le terme anglais complex adaptive systems (CAS) a été introduit par l'Institut interdisciplinaire de Santa Fe notamment par John H. Holland et Murray Gell-Mann. En 1962, Vero Copner Wynne-Edwards a observé la sélection de groupe à l’œuvre dans les communautés d’oiseaux sauvages.
Réseau invariant d'échelleUn réseau invariant d'échelle (ou réseau sans échelle, ou encore scale-free network en anglais) est un réseau dont les degrés suivent une loi de puissance. Plus explicitement, dans un tel réseau, la proportion de nœuds de degré k est proportionnelle à pour grand, où est un paramètre (situé entre 2 et 3 pour la plupart des applications). Beaucoup de réseaux, comme le réseau du web, les réseaux sociaux et les réseaux biologiques semblent se comporter comme des réseaux invariants d'échelle, d'où l'importance de ce modèle.
Théorie des réseauxvignette|Graphe partiel de l'internet, basé sur les données de opte.org du 15 janvier 2005 (voir description de l'image pour plus de détails) La théorie des réseaux est l'étude de graphes en tant que représentation d'une relation symétrique ou asymétrique entre des objets discrets. Elle s'inscrit dans la théorie des graphes : un réseau peut alors être défini comme étant un graphe où les nœuds (sommets) ou les arêtes (ou « arcs », lorsque le graphe est orienté) ont des attributs, comme une étiquette (tag).
MétaheuristiqueUne métaheuristique est un algorithme d’optimisation visant à résoudre des problèmes d’optimisation difficile (souvent issus des domaines de la recherche opérationnelle, de l'ingénierie ou de l'intelligence artificielle) pour lesquels on ne connaît pas de méthode classique plus efficace. Les métaheuristiques sont généralement des algorithmes stochastiques itératifs, qui progressent vers un optimum global (c'est-à-dire l'extremum global d'une fonction), par échantillonnage d’une fonction objectif.
Science des réseauxvignette|Les liens de la network science La Science des Réseaux, ou Network Science, est une discipline scientifique émergente qui se donne pour objet l'étude des relations, liens et interconnexions entre les choses, et non les choses en elles-mêmes. Champ interdisciplinaire de recherche, elle s'applique en physique, biologie, épidémiologie, science de l'information, science cognitive et réseaux sociaux. Elle vise à découvrir des propriétés communes au comportement de ces réseaux hétérogènes via la construction d'algorithmes et d'outils.
Réseau complexeEn théorie des graphes, un réseau complexe est un réseau possédant une architecture et une topologie complexe et irrégulière. Comme tous les réseaux, ils sont composés de nœuds (ou sommets ou points) représentant des objets, interconnectés par des liens (ou arêtes ou lignes). Ces réseaux sont des représentations abstraites des relations principalement présentes dans la vie réelle dans une grande diversité de systèmes biologiques et technologiques.
Système complexevignette|Visualisation sous forme de graphe d'un réseau social illustrant un système complexe. Un système complexe est un ensemble constitué d'un grand nombre d'entités en interaction dont l'intégration permet d'achever un but commun. Les systèmes complexes sont caractérisés par des propriétés émergentes qui n'existent qu'au niveau du système et ne peuvent pas être observées au niveau de ses constituants. Dans certains cas, un observateur ne peut pas prévoir les rétroactions ou les comportements ou évolutions des systèmes complexes par le calcul, ce qui amène à les étudier à l'aide de la théorie du chaos.
Social complexityIn sociology, social complexity is a conceptual framework used in the analysis of society. In the sciences, contemporary definitions of complexity are found in systems theory, wherein the phenomenon being studied has many parts and many possible arrangements of the parts; simultaneously, what is complex and what is simple are relative and change in time. Contemporary usage of the term complexity specifically refers to sociologic theories of society as a complex adaptive system, however, social complexity and its emergent properties are recurring subjects throughout the historical development of social philosophy and the study of social change.