Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'application de l'apprentissage automatique dans la dynamique moléculaire et les matériaux, en mettant l'accent sur la création de caractéristiques significatives et l'importance de la généralisabilité.
Explore les régressions paramétriques, en mettant l'accent sur la simplicité et la complexité des compromis de régression linéaire entre les modèles paramétriques et non paramétriques.
Couvre des exemples de modèles de décision pour lapprentissage supervisé, y compris la régression, la classification, les paires de classement et le décodage de séquence pour les modèles OCR.
Couvre les prédicteurs de moyenne locaux, y compris les voisins les plus proches K et les estimateurs Nadaraya-Watson, ainsi que la régression linéaire locale et ses applications.
Enquêter sur la façon dont le mois de naissance influence le succès des athlètes, analyser l'ensemble de données des athlètes japonais pour explorer les tendances dans les dates de naissance et les professions.
Explore l'optimisation convexe dans la réduction de la dimensionnalité non linéaire, en présentant des applications pratiques dans les tâches de traitement du signal et de régression.