Explore les représentations structurales équivariantes dans l'apprentissage machine atomistique, soulignant l'importance de représenter les propriétés cibles dans la base sphérique.
Couvre la régression non paramétrique à l'aide de techniques d'estimation basées sur le noyau pour modéliser des relations complexes entre les variables.
Couvre les perceptrons multicouches (MLP) et leur application de la classification à la régression, y compris le théorème d'approximation universelle et les défis liés aux gradients.
Se plonge dans l'utilisation de l'apprentissage automatique pour prédire la densité des paires sans spin et comprendre la corrélation électronique dans des systèmes complexes.
Explore l'apprentissage des modèles graphiques avec les estimateurs M, la régression des processus Gaussiens, la modélisation Google PageRank, l'estimation de la densité et les modèles linéaires généralisés.
Présente les principes fondamentaux de la régression dans l'apprentissage automatique, couvrant la logistique des cours, les concepts clés et l'importance des fonctions de perte dans l'évaluation des modèles.