Affine Lie algebraIn mathematics, an affine Lie algebra is an infinite-dimensional Lie algebra that is constructed in a canonical fashion out of a finite-dimensional simple Lie algebra. Given an affine Lie algebra, one can also form the associated affine Kac-Moody algebra, as described below. From a purely mathematical point of view, affine Lie algebras are interesting because their representation theory, like representation theory of finite-dimensional semisimple Lie algebras, is much better understood than that of general Kac–Moody algebras.
Witt algebraIn mathematics, the complex Witt algebra, named after Ernst Witt, is the Lie algebra of meromorphic vector fields defined on the Riemann sphere that are holomorphic except at two fixed points. It is also the complexification of the Lie algebra of polynomial vector fields on a circle, and the Lie algebra of derivations of the ring C[z,z−1]. There are some related Lie algebras defined over finite fields, that are also called Witt algebras. The complex Witt algebra was first defined by Élie Cartan (1909), and its analogues over finite fields were studied by Witt in the 1930s.
Lie algebra cohomologyIn mathematics, Lie algebra cohomology is a cohomology theory for Lie algebras. It was first introduced in 1929 by Élie Cartan to study the topology of Lie groups and homogeneous spaces by relating cohomological methods of Georges de Rham to properties of the Lie algebra. It was later extended by to coefficients in an arbitrary Lie module. If is a compact simply connected Lie group, then it is determined by its Lie algebra, so it should be possible to calculate its cohomology from the Lie algebra.
Group contractionIn theoretical physics, Eugene Wigner and Erdal İnönü have discussed the possibility to obtain from a given Lie group a different (non-isomorphic) Lie group by a group contraction with respect to a continuous subgroup of it. That amounts to a limiting operation on a parameter of the Lie algebra, altering the structure constants of this Lie algebra in a nontrivial singular manner, under suitable circumstances. For example, the Lie algebra of the 3D rotation group SO(3), [X1, X2] = X3, etc.
Particle physics and representation theoryThere is a natural connection between particle physics and representation theory, as first noted in the 1930s by Eugene Wigner. It links the properties of elementary particles to the structure of Lie groups and Lie algebras. According to this connection, the different quantum states of an elementary particle give rise to an irreducible representation of the Poincaré group. Moreover, the properties of the various particles, including their spectra, can be related to representations of Lie algebras, corresponding to "approximate symmetries" of the universe.
Représentation projectiveEn mathématiques, plus précisément en théorie des représentations, une représentation projective d'un groupe sur un espace vectoriel est un homomorphisme du groupe dans le groupe projectif linéaire . Soit un groupe, un corps et un -espace vectoriel. désigne le groupe général linéaire de . On note le centre de ; il est isomorphe à . est par définition le groupe quotient : . Il existe deux définitions équivalentes d'une représentation projective de sur : un morphisme ; une application telle qu'il existe une fonction , vérifiant : .
Groupe de HeisenbergEn mathématiques, le groupe de Heisenberg d'un anneau unifère A (non nécessairement commutatif) est le groupe multiplicatif des matrices triangulaires supérieures de taille 3 à coefficients dans A et dont les éléments diagonaux sont égaux au neutre multiplicatif de l'anneau : Originellement, l'anneau A choisi par Werner Heisenberg était le corps R des réels. Le « groupe de Heisenberg continu », , lui a permis d'expliquer, en mécanique quantique, l'équivalence entre la représentation de Heisenberg et celle de Schrödinger.
Groupe de Poincaré (transformations)Le groupe de Poincaré ou symétrie de Poincaré est l'ensemble des isométries de l'espace-temps de Minkowski. Il a la propriété d'être un groupe de Lie non compact à 10 dimensions. Sa version complète inclut quatre types de symétrie : les translations (c'est-à-dire les déplacements) dans le temps et l'espace, formant le groupe de Lie abélien des translations sur l'espace-temps ; les rotations dans l'espace, qui forment le groupe de Lie non abélien des rotations tridimensionnelles ; les transformations de Lorentz propres et orthochrones, laissant inchangés le sens du temps et l'orientation de l'espace ; le renversement du temps T et la parité P (renversement des coordonnées d'espace), qui forment un groupe discret (Id ; T ; P ; PT).
Extension de groupesEn mathématiques, plus précisément en théorie des groupes, une extension de groupes est une manière de décrire un groupe en termes de deux groupes « plus petits ». Plus précisément, une extension d'un groupe Q par un groupe N est un groupe G qui s'insère dans une suite exacte courte Autrement dit : G est une extension de Q par N si (à isomorphismes près) N est un sous-groupe normal de G et Q est le groupe quotient G/N. L'extension est dite centrale si N est inclus dans le centre de G.
Transformations de GaliléeEn physique, une transformation de Galilée correspond aux formules de transformations des coordonnées spatiales et temporelle entre deux référentiels galiléens donnés. Tout référentiel en mouvement de translation rectiligne et uniforme par rapport à un référentiel donné supposé galiléen, est lui-même galiléen. Une telle transformation laisse invariantes les équations de la mécanique newtonienne, mais pas celles de la dynamique relativiste ou les équations de Maxwell.