Logique déontiquevignette|"Justicia", Giotto di Bondone (1267-1337), Capilla Scrovegni, Padoue, Italie. La logique déontique (du grec déon, déontos : devoir, ce qu'il faut, ce qui convient) tente de formaliser les rapports qui existent entre les quatre caractéristiques d'une loi : l'obligation, l'interdiction, la permission et le facultatif. Gottfried Wilheim Leibniz en 1670 proposa le premier d'appliquer la logique modale à la morale en remarquant l'analogie suivante : .
Principe d'identitéLe principe d'identité affirme qu'une chose, considérée sous un même rapport, est identique à elle-même. On l'exprime sous la forme : « ce qui est est » (A est A) et « ce qui n'est pas n'est pas » : il y a cohérence de l'être, la réalité a une certaine immuabilité, l'arbre reste arbre : il y a cohérence de la connaissance ou du langage, toute désignation doit conserver une permanence, le mot « arbre » doit désigner l'arbre. Le principe d'identité présente donc deux versions.
Logique informelleLa logique informelle, intuitivement, est l'étude des principes de la logique et de la pensée logique en dehors d'une théorie formelle, c'est-à-dire abstraite. Cependant, peut-être à cause de la mention du terme informelle dans le titre, la définition précise de la logique informelle est un sujet de litige. Ralph H. Johnson et J. Anthony Blair définissent la logique informelle comme « une branche de la logique dont la tâche est de développer des normes, des critères, des procédures non formels pour l'analyse, l'interprétation, l'évaluation, la critique et la construction de l'argumentation ».
Interprétation (logique)En logique, une interprétation est une attribution de sens aux symboles d'un langage formel. Les langages formels utilisés en mathématiques, en logique et en informatique théorique ne sont définis dans un premier temps que syntaxiquement ; pour en donner une définition complète, il faut expliquer comment ils fonctionnent et en donner une interprétation. Le domaine de la logique qui donne une interprétation aux langages formels s'appelle la sémantique formelle.
Distinction type-jetonLa dichotomie type–jeton est la différence entre le fait de nommer une classe (type) d'objets et le fait de nommer les instances individuelles (jetons) de cette classe. Comme chaque type peut être représenté par plusieurs jetons, il y a généralement plus de jetons que de types d'un objet. Par exemple, on pourra alors associer un jeton « Einstein» à un type comme « être humain ». La formulation « Einstein est un être humain » est alors sans ambiguïté sur la formulation « est un ».
Implication réciproqueEn mathématiques, plus précisément en calcul propositionnel, une implication réciproque est une proposition interchangeant la prémisse et la conclusion d'une implication. La réciproque de la réciproque est alors l'implication initiale. Lorsque l'implication comporte plusieurs prémisses, l'échange de la conclusion avec seulement une partie des prémisses est parfois aussi appelée réciproque, comme pour le théorème de Thalès où les conditions d'alignement restent en prémisse pour la réciproque.
Négation logiqueEn logique et en mathématiques, la négation est un opérateur logique unaire. Il sert à nier une proposition. On note la négation d'une proposition P de diverses manières dont : ¬P (utilisée dans cet article); Non P ; Ces formulations se lisent « négation de P » ou plus simplement « non P ». Dans l'interprétation par des tables de vérité, la proposition ¬P est vraie quand P est fausse et elle est fausse quand P est vraie. La table de vérité s'écrit simplement : ou On remarque alors que où dénote une contradiction.
Valeur de véritéUne valeur de vérité est une valeur attribuée à chaque proposition logique. Pour donner une valeur de vérité à une proposition, on attribue des valeurs de vérité aux variables qu'elle contient. La valeur d'une proposition formés de deux propositions P et Q et d'un connecteur est calculée à partir des valeurs de vérité attribuées à P et à Q. Ainsi la valeur de vérité attribuée à « P et Q » sera « p.q » où « . » est la multiplication. En conséquence, P et Q est vrai si et seulement si P et Q sont chacun vrais.
Formalism (philosophy of mathematics)In the philosophy of mathematics, formalism is the view that holds that statements of mathematics and logic can be considered to be statements about the consequences of the manipulation of strings (alphanumeric sequences of symbols, usually as equations) using established manipulation rules. A central idea of formalism "is that mathematics is not a body of propositions representing an abstract sector of reality, but is much more akin to a game, bringing with it no more commitment to an ontology of objects or properties than ludo or chess.
Free logicA free logic is a logic with fewer existential presuppositions than classical logic. Free logics may allow for terms that do not denote any object. Free logics may also allow models that have an empty domain. A free logic with the latter property is an inclusive logic. In classical logic there are theorems that clearly presuppose that there is something in the domain of discourse. Consider the following classically valid theorems. 1. 2. 3. A valid scheme in the theory of equality which exhibits the same feature is 4.