Concept

Philosophie des mathématiques

Concepts associés (49)
Logicisme
Le logicisme est une attitude vis-à-vis des mathématiques selon laquelle celles-ci sont une extension de la logique et donc que tous les concepts et théories mathématiques sont réductibles à la logique. Si ce programme était réalisable, il pourrait soutenir le positivisme logique en particulier, et le réductionnisme en général. Bertrand Russell et Alfred North Whitehead ont défendu cette approche, créée par le mathématicien Gottlob Frege. Le logicisme a joué un rôle clé dans le développement de la philosophie analytique au .
Universaux
En métaphysique, les universaux sont des types, des propriétés ou des relations qui ont un caractère universel au sens où ils peuvent, selon Aristote, être « dits de plusieurs », c'est-à-dire être conçus comme propres à plusieurs choses singulières différentes. Les universaux sont une manière de comprendre ce qui est commun aux choses singulières que l'on nomme par opposition les « particuliers ». Par exemple, la « chevalinité », la circularité, ou la « parentité » sont des universaux opposés aux particuliers que sont tel cheval, tel cercle ou tel parent.
Paradoxe de Russell
Le paradoxe de Russell, ou antinomie de Russell, est un paradoxe très simple de la théorie des ensembles (Russell lui-même parle de théorie des classes, en un sens équivalent), qui a joué un rôle important dans la formalisation de celle-ci. Il fut découvert par Bertrand Russell vers 1901 et publié en 1903. Il était en fait déjà connu à Göttingen, où il avait été découvert indépendamment par Ernst Zermelo, à la même époque, mais ce dernier ne l'a pas publié.
Philosophie des sciences
La philosophie des sciences est la branche de la philosophie qui étudie les fondements philosophiques, les méthodes et les implications de la science, qu'il s'agisse de sciences naturelles ou de sciences sociales. La philosophie des sciences a pour objet la définition de la science, son but et la fiabilité des théories. Dans cette optique, elle s'appuie sur la philosophie (métaphysique, ontologie, éthique) et l'histoire des sciences.
Théorèmes d'incomplétude de Gödel
Les théorèmes d'incomplétude de Gödel sont deux théorèmes célèbres de logique mathématique, publiés par Kurt Gödel en 1931 dans son article (« Sur les propositions formellement indécidables des Principia Mathematica et des systèmes apparentés »). Ils ont marqué un tournant dans l'histoire de la logique en apportant une réponse négative à la question de la démonstration de la cohérence des mathématiques posée plus de 20 ans auparavant par le programme de Hilbert.
Constructivisme (mathématiques)
En philosophie des mathématiques, le constructivisme est une position vis-à-vis des mathématiques qui considère que l'on ne peut effectivement démontrer l'existence d'objets mathématiques qu'en donnant une construction de ceux-ci, une suite d'opérations mentales qui conduit à l'évidence de l'existence de ces objets. En particulier, les constructivistes ne considèrent pas que le raisonnement par l'absurde est universellement valide, une preuve d'existence par l'absurde (c-à-d une preuve où la non-existence entraîne une contradiction) ne conduisant pas en soi à une construction de l'objet.
Bertrand Russell
Infobox Philosophe | nom = Bertrand Russell | image = Bertrand Russell cropped.jpg | légende = Bertrand Russell en novembre 1957. | alt = Photographie en noir et blanc d'un homme aux cheveux blancs, mains jointes sur ses lunettes, observant le spectateur d'un air amusé | date de naissance = 18 mai 1872 | lieu de naissance = Trellech (Monmouthshire, Royaume-Uni) | date de décès = 2 février 1970 | lieu de décès = Penrhyndeudraeth (Gwynedd, Royaume-Uni) | tradition philosophique = Philosophie analytique | principaux intérêts = Logique, mathématiques, physique, éthique, religion, politique | œuvres principales = Principia Mathematica,De la dénotation | a influencé = Ludwig Wittgenstein, A.
Principia Mathematica
Les Principia Mathematica sont une œuvre en trois volumes d'Alfred North Whitehead et Bertrand Russell, publiés en 1910-1913. Cette œuvre a pour sujet les fondements des mathématiques. Avec en particulier l'idéographie de Gottlob Frege, c'est un ouvrage fondamental, dans la mesure où il participe de façon décisive à la naissance de la logique moderne. Entre 1898 et 1903, Whitehead travaille à l'édition d'un deuxième volume de son .
Antiréalisme
En philosophie analytique, le terme antiréalisme décrit toute position impliquant le refus d'une réalité objective. Ainsi, on peut parler de l'antiréalisme à l'égard des , du passé, du futur, des universaux, des entités mathématiques (telles que les entiers naturels), des catégories morales, du monde matériel ou même de la pensée. Deux interprétations sont clairement distinctes mais souvent confondues.
Proof by contradiction
In logic, proof by contradiction is a form of proof that establishes the truth or the validity of a proposition, by showing that assuming the proposition to be false leads to a contradiction. Although it is quite freely used in mathematical proofs, not every school of mathematical thought accepts this kind of nonconstructive proof as universally valid. More broadly, proof by contradiction is any form of argument that establishes a statement by arriving at a contradiction, even when the initial assumption is not the negation of the statement to be proved.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.