RéalitéLa réalité désigne l’ensemble des phénomènes considérés comme existant effectivement. Ce concept désigne ce qui est physique, concret, par opposition à ce qui est imaginé, rêvé ou fictif. Si l'usage du mot est initialement philosophique, particulièrement dans sa branche ontologique, il a intégré le langage courant et donné lieu à des usages spécifiques, notamment en science. Le Dictionnaire Larousse donne de « réalité » (du latin médiéval realitas, du latin classique realis, de res, « chose ») les définitions suivantes : ; ; ; .
Concept (philosophie)En logique, un concept est un contenu de pensée, qui, lorsqu'il est appliqué à un objet, peut former une proposition. En linguistique, le concept représente le signifié, c'est-à-dire le sens du mot, tandis que le mot lui-même constitue son signifiant. Le concept est un terme abstrait qui se distingue donc de la chose désignée par ce concept. Le terme lui-même est introduit au Moyen Âge (conceptus) par Thomas d'Aquin puis Guillaume d'Ockham et les autres philosophes scolastiques .
AntiréalismeEn philosophie analytique, le terme antiréalisme décrit toute position impliquant le refus d'une réalité objective. Ainsi, on peut parler de l'antiréalisme à l'égard des , du passé, du futur, des universaux, des entités mathématiques (telles que les entiers naturels), des catégories morales, du monde matériel ou même de la pensée. Deux interprétations sont clairement distinctes mais souvent confondues.
Proof by contradictionIn logic, proof by contradiction is a form of proof that establishes the truth or the validity of a proposition, by showing that assuming the proposition to be false leads to a contradiction. Although it is quite freely used in mathematical proofs, not every school of mathematical thought accepts this kind of nonconstructive proof as universally valid. More broadly, proof by contradiction is any form of argument that establishes a statement by arriving at a contradiction, even when the initial assumption is not the negation of the statement to be proved.
Philosophie analytiqueL'expression « philosophie analytique » désigne un mouvement philosophique qui se fonda dans un premier temps sur la nouvelle logique contemporaine, issue des travaux de Gottlob Frege et Bertrand Russell à la fin du et au début du , pour éclairer les grandes questions philosophiques. Sa démarche s'appuie sur une analyse logique du langage cherchant à mettre en évidence les erreurs de raisonnement que celui-ci peut induire et faisant ainsi de la « clarification logique des pensées » le but de la philosophie selon le mot de Ludwig Wittgenstein dans le célèbre Tractatus logico-philosophicus.
Infinithumb|∞ : le symbole infini. Le mot « infini » (-e, -s) est un adjectif servant à qualifier quelque chose qui n'a pas de limite en nombre ou en taille. Il vient du latin infīnītus, dérivé de fīnītus « limité » (avec in-, préfixe négatif), issu lui-même du verbe fīnĭo, fīnīre (« délimiter », mais aussi : « préciser », « déterminer », et intransitivement « finir »), et du nom fīnis (souvent au pluriel, fīnes : « bornes, limites d'un champ », « frontières d'un pays ») ; il signifie donc, littéralement « qui est sans borne », mais aussi « indéterminé » et « indéfini ».
Démonstration (logique et mathématiques)vignette| : un des plus vieux fragments des Éléments d'Euclide qui montre une démonstration mathématique. En mathématiques et en logique, une démonstration est un ensemble structuré d'étapes correctes de raisonnement. Dans une démonstration, chaque étape est soit un axiome (un fait acquis), soit l'application d'une règle qui permet d'affirmer qu'une proposition, la conclusion, est une conséquence logique d'une ou plusieurs autres propositions, les prémisses de la règle.
Kurt GödelKurt Gödel, né le à Brünn et mort le à Princeton (New Jersey), est un logicien et mathématicien autrichien naturalisé américain. Son résultat le plus connu, le théorème d'incomplétude de Gödel, affirme que n'importe quel système logique suffisamment puissant pour décrire l'arithmétique des entiers admet des propositions sur les nombres entiers ne pouvant être ni infirmées ni confirmées à partir des axiomes de la théorie. Ces propositions sont qualifiées d'indécidables.
Infini potentielL'infini potentiel est un dont le modèle le plus simple est l'infinité de la série des entiers naturels : 0, 1, 2, 3, 4... Chaque terme de cette série est fini, mais à chaque étape on peut atteindre un nouvel entier en lui ajoutant 1, ceci indéfiniment. L'infini potentiel n'est donc jamais atteint et correspond à une limite potentielle et non achevée. Il s'oppose à l'infini en acte, qui considère l'infini comme une entité achevée comme l'est l'ensemble des entiers naturels.
Théorie des ensemblesLa théorie des ensembles est une branche des mathématiques, créée par le mathématicien allemand Georg Cantor à la fin du . La théorie des ensembles se donne comme primitives les notions d'ensemble et d'appartenance, à partir desquelles elle reconstruit les objets usuels des mathématiques : fonctions, relations, entiers naturels, relatifs, rationnels, nombres réels, complexes... C'est pourquoi la théorie des ensembles est considérée comme une théorie fondamentale dont Hilbert a pu dire qu'elle était un « paradis » créé par Cantor pour les mathématiciens.