Coefficient binomial de GaussEn mathématiques, les coefficients binomiaux de Gauss ou coefficients q-binomiaux ou encore q-polynômes de Gauss sont des q -analogues des coefficients binomiaux, introduits par C. F. Gauss en 1808 . Le coefficient q-binomial, écrit ou , est un polynôme en à coefficients entiers, qui donne, lorsque est une puissance de nombre premier, le nombre de sous-espaces vectoriels de dimension d'un espace vectoriel de dimension sur un corps fini à éléments.
Difference polynomialsIn mathematics, in the area of complex analysis, the general difference polynomials are a polynomial sequence, a certain subclass of the Sheffer polynomials, which include the Newton polynomials, Selberg's polynomials, and the Stirling interpolation polynomials as special cases. The general difference polynomial sequence is given by where is the binomial coefficient. For , the generated polynomials are the Newton polynomials The case of generates Selberg's polynomials, and the case of generates Stirling's interpolation polynomials.
Nombre eulérienEn mathématiques, et plus précisément en analyse combinatoire, le nombre eulérien A(n, k), est le nombre de permutations des entiers de 1 à n pour lesquelles exactement k éléments sont plus grands que l'élément précédent (permutations avec k « montées » (). Les nombres eulériens sont les coefficients des polynômes eulériens : Ces polynômes apparaissent au numérateur d'expressions liées à la fonction génératrice de la suite . Ces nombres forment la .
List of factorial and binomial topicsThis is a list of factorial and binomial topics in mathematics. See also binomial (disambiguation). Abel's binomial theorem Alternating factorial Antichain Beta function Bhargava factorial Binomial coefficient Pascal's triangle Binomial distribution Binomial proportion confidence interval Binomial-QMF (Daubechies wavelet filters) Binomial series Binomial theorem Binomial transform Binomial type Carlson's theorem Catalan number Fuss–Catalan number Central binomial coefficient Combination Combinatorial numbe
Preuve combinatoireIn mathematics, the term combinatorial proof is often used to mean either of two types of mathematical proof: A proof by double counting. A combinatorial identity is proven by counting the number of elements of some carefully chosen set in two different ways to obtain the different expressions in the identity. Since those expressions count the same objects, they must be equal to each other and thus the identity is established. A bijective proof. Two sets are shown to have the same number of members by exhibiting a bijection, i.
Tableau triangulairedroite|vignette|Construction du triangle de Bell. En mathématiques et en informatique, un tableau triangulaire de nombres, ou de polynômes est une suite doublement indexée dans laquelle chaque ligne est aussi longue que son ordre. Dans de nombreux cas, il s'agit d'une suite définie pour les entiers vérifiant . La ligne de rang n est alors le n + 1-uplet , et la colonne de rang k est la suite . Parmi les exemples notables, on peut citer : Le triangle de Bell, dont les termes dénombrent certaines partitions d'un ensemble.
Calcul ombralEn mathématiques, le calcul ombral est le nom d'un ensemble de techniques de calcul formel qui, avant les années 1970, était plutôt appelé calcul symbolique. Il s'agit de l'étude des similarités surprenantes entre certaines formules polynomiales a priori non reliées entre elles, et d'un ensemble de règles de manipulation (au demeurant assez peu claires) pouvant être utilisées pour les obtenir (mais non les démontrer).
Nombre de Motzkinvignette|Les façons de choisir des cordes, pour 4 points. vignette|Les arbres unaires-binaires, pour 4 arcs. Les arbres sont en bijection avec les cercles. vignette|Les chemins de Motzkin, pour 4 pas. Les chemins sont en bijection avec les arbres. En mathématiques, et plus particulièrement en combinatoire, les nombres de Motzkin forment une suite d'entiers naturels utilisée dans divers problèmes de dénombrement. Ils sont nommés ainsi d'après le mathématicien Théodore Motzkin (1908-1970).
Identité de VandermondeEn mathématiques combinatoires, l'identité de Vandermonde, ainsi nommée en l'honneur d'Alexandre-Théophile Vandermonde (1772), ou formule de convolution, affirme que, pour des entiers naturels , on a où les nombres , avec , sont des coefficients binomiaux, c'est-à-dire que si (le point d'exclamation « ! » désignant la factorielle) et si . Les contributions non nulles à la somme de droite proviennent des valeurs de j pour lesquelles les coefficients binomiaux sont non nuls, c'est-à-dire pour .
Differential algebraIn mathematics, differential algebra is, broadly speaking, the area of mathematics consisting in the study of differential equations and differential operators as algebraic objects in view of deriving properties of differential equations and operators without computing the solutions, similarly as polynomial algebras are used for the study of algebraic varieties, which are solution sets of systems of polynomial equations. Weyl algebras and Lie algebras may be considered as belonging to differential algebra.