Explore les signaux de débruitage avec des modèles de mélange gaussien et l'algorithme EM, l'analyse de signal EMG et la segmentation d'image à l'aide de modèles markoviens.
Introduit des méthodes de regroupement fondées sur des modèles utilisant des modèles de mélange et des variables latentes, avec des exemples pratiques sur les données d'iris.
Introduit des opérateurs proximaux et des méthodes de gradient conditionnel pour les problèmes convexes composites de minimisation dans l'optimisation des données.
Couvre l'algorithme de maximisation des attentes et les techniques de regroupement, en mettant l'accent sur l'échantillonnage Gibbs et l'équilibre détaillé.