Réduction (complexité)En calculabilité et en théorie de la complexité, une réduction est un algorithme transformant une instance d'un problème algorithmique en une ou plusieurs instances d'un autre problème. S'il existe une telle réduction d'un problème A à un problème B, on dit que le problème A se réduit au problème B. Dans ce cas, le problème B est plus difficile que le problème A, puisque l'on peut résoudre le problème A en appliquant la réduction puis un algorithme pour le problème B. On écrit alors A ≤ B.
Classe de complexitéEn informatique théorique, et plus précisément en théorie de la complexité, une classe de complexité est un ensemble de problèmes algorithmiques dont la résolution nécessite la même quantité d'une certaine ressource. Une classe est souvent définie comme l'ensemble de tous les problèmes qui peuvent être résolus sur un modèle de calcul M, utilisant une quantité de ressources du type R, où n, est la taille de l'entrée. Les classes les plus usuelles sont celles définies sur des machines de Turing, avec des contraintes de temps de calcul ou d'espace.
NP (complexité)La classe NP est une classe très importante de la théorie de la complexité. L'abréviation NP signifie « non déterministe polynomial » (« en »). Un problème de décision est dans NP s'il est décidé par une machine de Turing non déterministe en temps polynomial par rapport à la taille de l'entrée. Intuitivement, cela revient à dire qu'on peut vérifier « rapidement » (complexité polynomiale) si une solution candidate est bien solution.
Informatique théoriquevignette|Une représentation artistique d'une machine de Turing. Les machines de Turing sont un modèle de calcul. L'informatique théorique est l'étude des fondements logiques et mathématiques de l'informatique. C'est une branche de la science informatique et la science formelle. Plus généralement, le terme est utilisé pour désigner des domaines ou sous-domaines de recherche centrés sur des vérités universelles (axiomes) en rapport avec l'informatique.
TautologieLa tautologie (du grec ancien ταὐτολογία, composé de ταὐτό, « la même chose », et λέγω, « dire » : le fait de redire la même chose) est une phrase ou un effet de style ainsi tourné que sa formulation ne puisse être que vraie. La tautologie est apparentée au truisme (ou lapalissade) et au pléonasme. En logique mathématique, le mot « tautologie » désigne une proposition toujours vraie selon les règles du calcul propositionnel. On utilise aussi l'adjectif tautologique en mathématiques pour désigner des structures qui émergent naturellement de la définition de certains objets.
Algèbre de Boole (logique)Lalgèbre de Boole, ou calcul booléen, est la partie des mathématiques qui s'intéresse à une approche algébrique de la logique, vue en termes de variables, d'opérateurs et de fonctions sur les variables logiques, ce qui permet d'utiliser des techniques algébriques pour traiter les expressions à deux valeurs du calcul des propositions. Elle fut lancée en 1854 par le mathématicien britannique George Boole. L'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.
Function problemIn computational complexity theory, a function problem is a computational problem where a single output (of a total function) is expected for every input, but the output is more complex than that of a decision problem. For function problems, the output is not simply 'yes' or 'no'. A functional problem is defined by a relation over strings of an arbitrary alphabet : An algorithm solves if for every input such that there exists a satisfying , the algorithm produces one such , and if there are no such , it rejects.
BPP (complexité)En informatique théorique, plus précisément en théorie de la complexité, la classe BPP (bounded-error probabilistic polynomial time) est la classe de problèmes de décision décidés par une machine de Turing probabiliste en temps polynomial, avec une probabilité d'erreur dans la réponse inférieure à 1/3. La classe BPP est l'ensemble des problèmes, ou de façon équivalente des langages, pour lesquels il existe une machine de Turing probabiliste en temps polynomial qui satisfait les conditions d'acceptation suivantes : Si le mot n'est pas dans le langage, la machine le rejette avec une probabilité supérieure à 2/3.
Complexité paramétréeEn algorithmique, la complexité paramétrée (ou complexité paramétrique) est une branche de la théorie de la complexité qui classifie les problèmes algorithmiques selon leur difficulté intrinsèque en fonction de plusieurs paramètres sur les données en entrée ou sur la sortie. Ce domaine est étudié depuis les années 90 comme approche pour la résolution exacte de problèmes NP-complets. Cette approche est utilisée en optimisation combinatoire, notamment en algorithmique des graphes, en intelligence artificielle, en théorie des bases de données et en bio-informatique.
Oracle (machine de Turing)vignette|upright=2|Une machine de Turing avec oracle peut faire appel à une boîte noire (oracle). En théorie de la complexité ou de la calculabilité, les machines de Turing avec oracle sont une variante des machines de Turing disposant d'une boîte noire, un oracle, capable de résoudre un problème de décision en une seule opération élémentaire. En particulier, l'oracle peut résoudre en temps constant un problème indécidable comme le problème de l'arrêt.