Introduit des courbes planes projectives, des degrés, des composantes, des multiplicités, des nombres d'intersection, des tangentes et des points multiples, aboutissant à l'énoncé du théorème de Bézout et de ses conséquences.
Explore le théorème de Wedderburn, les algèbres de groupe et le théorème de Maschke dans le contexte des algèbres simples de dimension finie et de leurs endomorphismes.
Explore l'unicité des arbres, des groupes d'automorphisme, des graphiques Cayley-Abels et la construction de sous-groupes vertex-transitifs avec des actions locales prescrites.