Branche principale (mathématiques)En analyse complexe, la branche principale est une détermination particulière d'une fonction analytique complexe multiforme, telle que la fonction racine n-ième ou le logarithme complexe. Cette détermination arbitraire est souvent choisie de façon à coïncider avec une fonction de la variable réelle, c'est-à-dire que la restriction de la branche principale à R prend des valeurs réelles. Une façon de visualiser la branche principale d'une fonction est de considérer ce qui se passe avec la réciproque de la fonction exponentielle complexe.
Fonction (mathématiques)vignette|Diagramme de calcul pour la fonction En mathématiques, une fonction permet de définir un résultat (le plus souvent numérique) pour chaque valeur d’un ensemble appelé domaine. Ce résultat peut être obtenu par une suite de calculs arithmétiques ou par une liste de valeurs, notamment dans le cas de relevé de mesures physiques, ou encore par d’autres procédés comme les résolutions d’équations ou les passages à la limite. Le calcul effectif du résultat ou son approximation repose éventuellement sur l’élaboration de fonction informatique.
Pôle (mathématiques)thumb|Représentation de la fonction avec deux pôles d'ordre 1, en z = et z = -. En analyse complexe, un pôle d'une fonction holomorphe est un certain type de singularité isolée qui se comporte comme la singularité en z = 0 de la fonction , où n est un entier naturel non nul. Une fonction holomorphe n'ayant que des singularités isolées qui sont des pôles est appelée une fonction méromorphe. Soient U un ouvert du plan complexe C, a un élément de U et une fonction holomorphe.
Racine carréeEn mathématiques élémentaires, la racine carrée d'un nombre réel positif x est l'unique réel positif qui, lorsqu'il est multiplié par lui-même, donne x, c'est-à-dire le nombre positif dont le carré vaut x. On le note ou x. Dans cette expression, x est appelé le radicande et le signe est appelé le radical. La fonction qui, à tout réel positif, associe sa racine carrée s'appelle la fonction racine carrée. En algèbre et analyse, dans un anneau ou un corps A, on appelle racine carrée de a, tout élément de A dont le carré vaut a.
Bijection réciproqueEn mathématiques, la bijection réciproque (ou fonction réciproque ou réciproque) d'une bijection est l'application qui associe à chaque élément de l'ensemble d'arrivée son unique antécédent par . Elle se note . On considère l'application de vers définie par . Pour chaque réel y, il y a un et un seul réel x tel que , ainsi pour = 8, le seul convenable est 2, en revanche, pour = –27 c'est –3. En termes mathématiques, on dit que est l'unique antécédent de et que est une bijection.
Fonction holomorphevignette|Une grille et son image par f d'une fonction holomorphe. En analyse complexe, une fonction holomorphe est une fonction à valeurs complexes, définie et dérivable en tout point d'un sous-ensemble ouvert du plan complexe C. Cette condition est beaucoup plus forte que la dérivabilité réelle. Elle entraîne (via la théorie de Cauchy) que la fonction est analytique : elle est infiniment dérivable et est égale, au voisinage de tout point de l'ouvert, à la somme de sa série de Taylor.