Fonction mesurableSoient E et F des espaces mesurables munis de leurs tribus respectives E et F. Une fonction f : E → F est dite (E, F)-mesurable si la par f de la tribu F est incluse dans E, c'est-à-dire si : L'identité, la composée de deux fonctions mesurables, sont mesurables. Les fonctions mesurables fournissent donc à la classe des espaces mesurables une structure de catégorie. Si F est l'ensemble des réels et si F est sa tribu borélienne, on dira simplement que f est une fonction mesurable sur (E, E).
C*-algèbreEn mathématiques, une C*-algèbre (complexe) est une algèbre de Banach involutive, c’est-à-dire un espace vectoriel normé complet sur le corps des complexes, muni d'une involution notée , et d'une structure d'algèbre complexe. Elle est également nommée algèbre stellaire. Les C*-algèbres sont des outils importants de la géométrie non commutative. Cette notion a été formalisée en 1943 par Israel Gelfand et Irving Segal. Les algèbres stellaires sont centrales dans l'étude des représentations unitaires de groupes localement compacts.
Point (géométrie)thumb|Points dans un plan euclidien. En géométrie, un point est le plus petit élément constitutif de l'espace géométrique, c'est-à-dire un lieu au sein duquel on ne peut distinguer aucun autre lieu que lui-même. géométrie euclidienne Le point, selon Euclide, est . On peut aussi dire plus simplement qu'un point ne désigne pas un objet mais un emplacement. Il n'a donc aucune dimension, longueur, largeur, épaisseur, volume ou aire. Sa seule caractéristique est sa position. On dit parfois qu'il est « infiniment petit ».
Topologie cofinieLa topologie cofinie est la topologie que l'on peut définir sur tout ensemble X de la manière suivante : l'ensemble des ouverts est constitué de l'ensemble vide et parties de X cofinies, c'est-à-dire dont le complémentaire dans X est fini. Formellement, si l'on note τ la topologie cofinie sur X, on a : ou plus simplement, en définissant la topologie via les fermés : les fermés de X sont X et ses parties finies. La topologie induite sur une partie Y de X est la topologie cofinie sur Y.
Intervalle unitéEn mathématique, l'intervalle unité est l'intervalle fermé [0,1], c'est-à-dire, l'ensemble de tous les nombres réels qui sont supérieurs ou égaux à 0 et inférieurs ou égaux à 1. Il est souvent noté I. Dans la littérature, le terme "intervalle unité" est parfois appliqué à d'autres intervalles : (0,1], [0,1), et (0,1). Cependant, la notation I est généralement réservée à l'intervalle fermé [0,1]. L'intervalle unité est un espace métrique complet.
Analyse harmonique (mathématiques)thumb|upright=1.2|Analyseur harmonique mécanique de Lord Kelvin datant de 1878. L'analyse harmonique est la branche des mathématiques qui étudie la représentation des fonctions ou des signaux comme superposition d'ondes de base. Elle approfondit et généralise les notions de série de Fourier et de transformée de Fourier. Les ondes de base s'appellent les harmoniques, d'où le nom de la discipline.
Disjoint union (topology)In general topology and related areas of mathematics, the disjoint union (also called the direct sum, free union, free sum, topological sum, or coproduct) of a family of topological spaces is a space formed by equipping the disjoint union of the underlying sets with a natural topology called the disjoint union topology. Roughly speaking, in the disjoint union the given spaces are considered as part of a single new space where each looks as it would alone and they are isolated from each other.
Ensemble nulle part denseEn topologie, un ensemble est nulle part dense ou rare s'il satisfait aux propriétés inverses du concept de densité. Intuitivement, un sous-ensemble A d'un espace topologique X est nulle part dense dans X si presque aucun point de X ne peut être « approché » par des points de A. Soit X un espace topologique et A un sous-ensemble de X.
Topologie d'AlexandroffEn mathématiques, une topologie d'Alexandroff est une topologie pour laquelle l'intersection d'une famille quelconque d'ouverts est un ouvert (et pas seulement l'intersection d'une famille finie d'ouverts). Cette notion a été introduite en 1937 par Pavel Alexandroff. Un espace topologique vérifie cette propriété si et seulement si sa topologie est cohérente avec ses sous-, c'est pourquoi un tel espace est aussi appelé espace finiment engendré. Les topologies d'Alexandroff sur un ensemble X sont en bijection avec les préordres sur X.
Théorème de BaireLe théorème de Baire, dit aussi lemme de Baire, est un théorème de topologie dû au mathématicien René Baire. On dit qu'un espace topologique est un espace de Baire si toute intersection dénombrable d'ouverts denses est dense. De façon équivalente, un espace topologique est de Baire si toute union dénombrable de fermés d'intérieurs vides est d'intérieur vide, ou encore, si le seul ouvert maigre est le vide. Le lemme (ou théorème) de Baire donne des conditions suffisantes pour que certains espaces soient de Baire.