Équations de Lagrangevignette|Joseph-Louis Lagrange Les équations de Lagrange, découvertes en 1788 par le mathématicien Joseph-Louis Lagrange, sont une reformulation de la mécanique classique. Il s'agit d'une reformulation de l'équation de Newton, qui ne fait pas intervenir les forces de réaction. Pour cela, on exprime les contraintes que subit la particule étudiée sous la forme d'équations du type : Il n'y a qu'une équation si le mouvement est contraint à une surface, deux s'il est contraint à une courbe.
Hamilton's principleIn physics, Hamilton's principle is William Rowan Hamilton's formulation of the principle of stationary action. It states that the dynamics of a physical system are determined by a variational problem for a functional based on a single function, the Lagrangian, which may contain all physical information concerning the system and the forces acting on it. The variational problem is equivalent to and allows for the derivation of the differential equations of motion of the physical system.
Principe de FermatLe principe de Fermat est un principe physique, attribué à Pierre de Fermat, qui sert de fondement à l'optique géométrique. Il décrit la forme du chemin optique d'un rayon lumineux et s'énonce ainsi : Une conséquence première du principe de Fermat est la propagation rectiligne des rayons lumineux dans les milieux homogènes. En effet, dans un milieu homogène, le temps de parcours est proportionnel à la longueur du trajet, et le chemin le plus court dans un espace euclidien pour aller d’un point à un autre est la ligne droite.
Maupertuis's principleIn classical mechanics, Maupertuis's principle (named after Pierre Louis Maupertuis) states that the path followed by a physical system is the one of least length (with a suitable interpretation of path and length). It is a special case of the more generally stated principle of least action. Using the calculus of variations, it results in an integral equation formulation of the equations of motion for the system. Maupertuis's principle states that the true path of a system described by generalized coordinates between two specified states and is a stationary point (i.
Mécanique analytiqueLa mécanique analytique est une formulation de la mécanique classique basée sur le calcul variationnel. La mécanique analytique s'est avérée un outil très important en physique théorique. En particulier, la mécanique quantique emprunte énormément au formalisme de la mécanique analytique. Contrairement à la mécanique d'Isaac Newton qui s'appuie sur le concept de point matériel, la mécanique analytique se penche sur les systèmes arbitrairement complexes, et étudie l'évolution de leurs degrés de libertés dans ce qu'on appelle un espace de configuration.
Calcul des variationsLe calcul des variations (ou calcul variationnel) est, en mathématiques et plus précisément en analyse fonctionnelle, un ensemble de méthodes permettant de minimiser une fonctionnelle. Celle-ci, qui est à valeurs réelles, dépend d'une fonction qui est l'inconnue du problème. Il s'agit donc d'un problème de minimisation dans un espace fonctionnel de dimension infinie. Le calcul des variations s'est développé depuis le milieu du jusqu'aujourd'hui ; son dernier avatar est la théorie de la commande optimale, datant de la fin des années 1950.
Principe de moindre actionLe principe de moindre action est le principe physique selon lequel la dynamique d'une quantité physique (la position, la vitesse et l'accélération d'une particule, ou les valeurs d'un champ en tout point de l'espace, et leurs variations) peut se déduire à partir d'une unique grandeur appelée action en supposant que les valeurs dynamiques permettent à l'action d'avoir une valeur optimale entre deux instants donnés (la valeur est minimale quand les deux instants sont assez proches).