Une fraction unitaire est un nombre rationnel écrit sous la forme d'une fraction où le numérateur est 1 et le dénominateur est un entier naturel non nul. Une fraction unitaire est par conséquent l'inverse d'un entier positif, 1/n, comme : 1/1, 1/2, 1/3, 1/42 etc. Multiplier deux fractions unitaires quelconques donne pour résultat une autre fraction unitaire : Par contre, additionner, soustraire, ou diviser deux fractions unitaires produit un résultat qui n'est généralement pas une fraction unitaire : 1/2 + 1/5 = 7/10 1/3 + 1/6 = 1/2 1/2 - 1/5 = 3/10 1/3 - 1/6 = 1/6 Les fractions unitaires jouent un rôle important dans l'arithmétique modulaire, comme elles peuvent être utilisées pour réduire la division modulaire lors du calcul des PGCD. Plus précisément, supposons que nous voulons exécuter des divisions par une valeur x, modulo y. Pour effectuer la division par x, bien défini modulo y, x et y doivent être premiers entre eux. Alors, en utilisant l'algorithme d'Euclide étendu pour les PGCD nous pouvons trouver a et b tels que à partir de quoi, on déduit que ou de manière équivalente N'importe quel nombre rationnel positif peut être écrit comme la somme de fractions unitaires distinctes. Par exemple : Les mathématiciens de l'Égypte ancienne utilisaient les sommes de fractions unitaires distinctes dans leur notation pour les nombres rationnels plus généraux, ainsi de telles sommes sont souvent appelées des fractions égyptiennes. De nos jours, il existe toujours un intérêt dans l'analyse des méthodes utilisées par les anciens pour choisir parmi les représentations possibles d'un nombre fractionnaire, et pour calculer avec de telles représentations. Le sujet des fractions égyptiennes est aussi à l'étude dans la théorie des nombres moderne ; par exemple, la conjecture d'Erdős-Graham et la conjecture d'Erdős-Straus concernent les sommes de fractions unitaires, de même que la définition des nombres harmoniques de Ore.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.