Lemme (mathématiques)Un lemme, en mathématiques et en logique mathématique, est un résultat intermédiaire sur lequel on s'appuie pour conduire la démonstration d'un théorème plus important. Dans l'Antiquité grecque, lemme (en λῆμμα) était un terme de logique : il désignait la majeure du syllogisme, c'est-à-dire la première assertion. Dans la dialectique grecque, le lemme, le prolemme et l'épiphore sont les trois parties de l'argument.
Anneau de BézoutEn algèbre commutative, un anneau quasi-bézoutien est un anneau où la propriété de Bézout est vérifiée ; plus formellement, c'est un anneau dans lequel tout idéal de type fini est principal. Un anneau de Bézout, ou anneau bézoutien, est un anneau quasi-bézoutien intègre. Un idéal de type fini est un idéal engendré par un nombre fini d'éléments. Un idéal engendré par un élément a est dit idéal principal et se note aA. Un idéal engendré par deux éléments a et b se note aA + bA, il est constitué des éléments de A pouvant s'écrire sous la forme au + bv avec u et v éléments de A.
Théorème des restes chinoisEn mathématiques, le théorème des restes chinois est un résultat d'arithmétique modulaire traitant de résolution de systèmes de congruences. Ce résultat, initialement établi pour Z/nZ, se généralise en théorie des anneaux. Ce théorème est utilisé en théorie des nombres. vignette|Exemple de Sun Zi : il y a 23 objets. La forme originale du théorème apparait sous forme de problème dans le livre de Sun Zi, le , datant du . Il est repris par le mathématicien chinois Qin Jiushao dans son ouvrage le Shùshū Jiǔzhāng (« Traité mathématique en neuf chapitres ») publié en 1247.
Polynomial greatest common divisorIn algebra, the greatest common divisor (frequently abbreviated as GCD) of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common divisor of two integers. In the important case of univariate polynomials over a field the polynomial GCD may be computed, like for the integer GCD, by the Euclidean algorithm using long division. The polynomial GCD is defined only up to the multiplication by an invertible constant.
Algorithme d'Euclide étenduEn mathématiques, l'algorithme d'Euclide étendu est une variante de l'algorithme d'Euclide. À partir de deux entiers a et b, il calcule non seulement leur plus grand commun diviseur (PGCD), mais aussi un de leurs couples de coefficients de Bézout, c'est-à-dire deux entiers u et v tels que au + bv = PGCD(a, b). Quand a et b sont premiers entre eux, u est alors l'inverse pour la multiplication de a modulo b (et v est de la même façon l'inverse modulaire de b, modulo a), ce qui est un cas particulièrement utile.
Corps commutatifvignette|Corps commutatif (pour n premier) En mathématiques, un corps commutatif (parfois simplement appelé corps, voir plus bas, ou parfois appelé champ) est une des structures algébriques fondamentales de l'algèbre générale. C'est un ensemble muni de deux opérations binaires rendant possibles les additions, soustractions, multiplications et divisions. Plus précisément, un corps commutatif est un anneau commutatif dans lequel l'ensemble des éléments non nuls est un groupe commutatif pour la multiplication.
Polynômethumb|Courbe représentative d'une fonction cubique. En mathématiques, un polynôme est une expression formée uniquement de produits et de sommes de constantes et d'indéterminées, habituellement notées X, Y, Z... Ces objets sont largement utilisés en pratique, ne serait-ce que parce qu'ils donnent localement une valeur approchée de toute fonction dérivable (voir l'article Développement limité) et permettent de représenter des formes lisses (voir l'article Courbe de Bézier, décrivant un cas particulier de fonction polynomiale).
Anneau (mathématiques)vignette|Richard Dedekind - 1870 En algèbre, un anneau est un ensemble muni de deux lois de composition interne appelées addition et multiplication, qui vérifient des propriétés analogues à celles de ces opérations sur les entiers relatifs. Plus précisément, deux définitions sont représentées dans la littérature mathématique, selon la considération d'un élément neutre : la majorité des sources récentes définissent un « anneau » comme un anneau unitaire, avec la multiplication ayant un élément neutre ; tandis que, selon de nombreux ouvrages, la présence d'une unité multiplicative n'est pas requise, et ce type d'anneau est ailleurs dénommé pseudo-anneau.
Nombre complexeEn mathématiques, l'ensemble des nombres complexes est actuellement défini comme une extension de l'ensemble des nombres réels, contenant en particulier un nombre imaginaire noté i tel que i = −1. Le carré de (−i) est aussi égal à −1 : (−i) = −1. Tout nombre complexe peut s'écrire sous la forme x + i y où x et y sont des nombres réels. Les nombres complexes ont été progressivement introduit au par l’école mathématique italienne (Jérôme Cardan, Raphaël Bombelli, Tartaglia) afin d'exprimer les solutions des équations du troisième degré en toute généralité par les formules de Cardan, en utilisant notamment des « nombres » de carré négatif.
Algorithme d'EuclideEn mathématiques, l'algorithme d'Euclide est un algorithme qui calcule le plus grand commun diviseur (PGCD) de deux entiers, c'est-à-dire le plus grand entier qui divise les deux entiers, en laissant un reste nul. L'algorithme ne requiert pas de connaître la factorisation de ces deux nombres. vignette|Peinture censée représenter le mathématicien Euclide d'Alexandrie, par Justus of Ghent. Selon Donald Knuth, l'algorithme d'Euclide est l'un des plus anciens algorithmes.