Concepts associés (24)
Nombre figuré
En arithmétique, un nombre figuré est un nombre entier qui peut être représenté par un ensemble de points disposés de façon plus ou moins régulière et formant une figure géométrique. Il répond donc à une classe particulière de problèmes de dénombrement. Les nombres figurés sont d'origine très ancienne. On attribue généralement à Pythagore les premières études de nombres figurés (nombres carrés). Diophante a résolu plusieurs problèmes les concernant. Pascal a écrit un traité sur le sujet.
Monôme (mathématiques)
En mathématiques, le terme de monôme désigne une expression algébrique ne comportant qu'un seul terme (binômes : deux termes, trinômes : trois termes...). Construction de l'anneau des polynômes En algèbre, un monôme est un polynôme dont un seul coefficient est non nul. Autrement dit, c'est un polynôme particulier qui s'exprime sous la forme d'un produit d'indéterminées (notées X, Y...) affecté d'un coefficient. Exemples sont des monômes en une indéterminée. est un monôme de degré , en deux indéterminées.
Puissance de deux
En arithmétique, une puissance de deux désigne un nombre noté sous la forme 2n où n est un entier naturel. Elle représente le produit du nombre 2 répété n fois avec lui-même, c'est-à-dire : . Ce cas particulier des puissances entières de deux se généralise dans l'ensemble des nombres réels, par la fonction exponentielle de base 2, dont la fonction réciproque est le logarithme binaire. Par convention et pour assurer la continuité de cette fonction exponentielle de base 2, la puissance zéro de 2 est prise égale à 1, c'est-à-dire que 20 = 1.
Formule d'itération de Pascal
En mathématiques, plus précisément en combinatoire, la formule d'itération de Pascal, appelée aussi formule de la gouttière (ou formule de la crosse de hockey par traduction de l'anglais «Hockey-stick identity») est une formule exprimant la somme de termes consécutifs d'une colonne du triangle de Pascal. La formule donne le résultat d'une somme finie de termes consécutifs d'une colonne du triangle de Pascal, débutant au premier terme non nul, comme étant le coefficient binomial situé à droite et en-dessous du dernier terme.
Formule du trinôme de Newton
En mathématiques, la formule du trinôme de Newton (ou plus simplement la formule du trinôme) est une relation donnant le développement d'une puissance d'une somme de trois termes en monômes. Pour tous nombres réels ou complexes a, b et c, et pour tout entier naturel n, cette formule s'écrit où la somme porte sur tous les indices i, j, k entiers tels que . Les coefficients de chaque monôme sont appelés coefficients trinomiaux et donnés par et peuvent être calculés en utilisant la pyramide de Pascal.
Pyramide de Pascal
thumb|Les 5 premiers niveaux d'une pyramide de Pascal|300x300px En mathématiques, la pyramide de Pascal (ou tétraèdre de Pascal) est une généralisation tridimensionnelle du triangle de Pascal. De même que le triangle de Pascal donne les coefficients binomiaux, la pyramide de Pascal donne les coefficients trinomiaux. Les coefficients trinomiaux constituent un cas particulier des coefficients multinomiaux ; ils s'écrivent sous la forme où sont trois entiers naturels (positifs ou nuls) et . Ils sont définis par la formule .
Stars and bars (combinatorics)
In the context of combinatorial mathematics, stars and bars (also called "sticks and stones", "balls and bars", and "dots and dividers") is a graphical aid for deriving certain combinatorial theorems. It was popularized by William Feller in his classic book on probability. It can be used to solve many simple counting problems, such as how many ways there are to put n indistinguishable balls into k distinguishable bins. The stars and bars method is often introduced specifically to prove the following two theorems of elementary combinatorics concerning the number of solutions to an equation.
Encyclopédie en ligne des suites de nombres entiers
L'encyclopédie en ligne des suites de nombres entiers (originellement en anglais On-Line Encyclopedia of Integer Sequences, couramment abrégé sous le sigle OEIS) est un site web permettant d'effectuer gratuitement des recherches parmi une base de données de suites d'entiers présentant un intérêt mathématique ou parfois simplement ludique. Dans cette forme et cette présentation, c'est la plus grande du monde (en 2012). Elle est consultée des milliers de fois chaque jour.
Formule de Faulhaber
En mathématiques, la formule de Faulhaber, portant le nom du mathématicien allemand Johann Faulhaber, exprime la somme des puissances p-ième des n premiers entiers : par une fonction polynomiale de degré p + 1 en n, les coefficients impliquant les nombres de Bernoulli : .Les coefficients qui apparaissent sont les coefficients binomiaux (aussi notés ). Dans la convention la plus usuelle, les nombres de Bernoulli sont mais ici, une convention moins courante est adoptée, à savoir que le nombre est changé en .
Pingala (mathématicien)
Piṅgala est un mathématicien indien (environ 200 av. J.-C.). Son nom vient du sanskrit Piṅgala (sanskrit) (पिङ्गल en devanāgarī). Il a fait une théorie de la prosodie ; son ouvrage Chandaḥśāstra décrit la combinatoire des combinaisons de n syllabes longues (guru) ou brèves (laghu), à l’origine de l’écriture des nombres en binaire. Il avait découvert la suite de nombres entiers connue de nos jours sous l'appellation suite de Fibonacci.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.