Couvre les exercices sur le théorème de Bayes, les fonctions génératrices de moment, le nombre de photons, les probabilités de maladie et les propriétés de distribution.
Couvre les concepts fondamentaux de probabilité et de statistique, y compris la loi de probabilité totale, le théorème de Bayes, et l'indépendance des événements.
Couvre les bases de la théorie des probabilités, y compris les définitions, les calculs et les concepts importants pour l'inférence statistique et l'apprentissage automatique.
Explore les modèles de mélange et les paramètres de niveau individuel dans des scénarios de choix discrets, couvrant la distribution, le théorème de Bayes et les valeurs attendues.
Couvre les méthodes d'ensemble comme les forêts aléatoires et les baies de Naive de Gaussian, expliquant comment elles améliorent la précision de prédiction et estimer les distributions gaussiennes conditionnelles.
Guide les élèves à travers une séance d'examen simulé et fournit des idées sur la résolution des probabilités et des exercices de mathématiques discrètes.
Explore le théorème de Bayes pour la détection de pièces défectueuses, les variables aléatoires discrètes et les fonctions de distribution, avec des exemples pratiques et des exercices.