In geometry, the elliptic coordinate system is a two-dimensional orthogonal coordinate system in which the coordinate lines are confocal ellipses and hyperbolae. The two foci and are generally taken to be fixed at and , respectively, on the -axis of the Cartesian coordinate system. The most common definition of elliptic coordinates is where is a nonnegative real number and On the complex plane, an equivalent relationship is These definitions correspond to ellipses and hyperbolae. The trigonometric identity shows that curves of constant form ellipses, whereas the hyperbolic trigonometric identity shows that curves of constant form hyperbolae. In an orthogonal coordinate system the lengths of the basis vectors are known as scale factors. The scale factors for the elliptic coordinates are equal to Using the double argument identities for hyperbolic functions and trigonometric functions, the scale factors can be equivalently expressed as Consequently, an infinitesimal element of area equals and the Laplacian reads Other differential operators such as and can be expressed in the coordinates by substituting the scale factors into the general formulae found in orthogonal coordinates. An alternative and geometrically intuitive set of elliptic coordinates are sometimes used, where and . Hence, the curves of constant are ellipses, whereas the curves of constant are hyperbolae. The coordinate must belong to the interval [-1, 1], whereas the coordinate must be greater than or equal to one. The coordinates have a simple relation to the distances to the foci and . For any point in the plane, the sum of its distances to the foci equals , whereas their difference equals . Thus, the distance to is , whereas the distance to is . (Recall that and are located at and , respectively.) A drawback of these coordinates is that the points with Cartesian coordinates (x,y) and (x,-y) have the same coordinates , so the conversion to Cartesian coordinates is not a function, but a multifunction.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.