Injection (mathématiques)Une application f est dite injective ou est une injection si tout élément de son ensemble d'arrivée a au plus un antécédent par f, ce qui revient à dire que deux éléments distincts de son ensemble de départ ne peuvent pas avoir la même par f. Lorsque les ensembles de départ et d'arrivée de f sont tous les deux égaux à la droite réelle R, f est injective si et seulement si son graphe intersecte toute droite horizontale en au plus un point. Si une application injective est aussi surjective, elle est dite bijective.
Ensemble de définitionEn mathématiques, l'ensemble de définition (également appelé domaine de définition ou parfois ensemble de départ, voir la discussion plus bas) d'une application ou d'une fonction désigne informellement l'ensemble des entrées acceptées par elle. La terminologie entre ensemble de définition et ensemble de départ diffère si l'on fait la distinction entre la notion de fonction et d'application ou non.
Graphe d'une fonctionthumb|Représentation du graphe de la fonction . Le graphe d'une fonction f de E dans F est le sous-ensemble G de E×F formé par les couples d'éléments liés par la correspondance : Cet ensemble est appelé le graphe de f parce qu'il permet d'en donner une représentation graphique dans le cas usuel où E et F sont des ensembles de réels : en effet, on peut alors parfois représenter E et F sur deux axes sécants, chaque couple de G peut alors être représenté par un point dans le plan, muni d'un repère défini par les deux axes.
SurjectionEn mathématiques, une surjection ou application surjective est une application pour laquelle tout élément de l'ensemble d'arrivée a au moins un antécédent, c'est-à-dire est d'au moins un élément de l'ensemble de départ. Il est équivalent de dire que l' est égal à l'ensemble d'arrivée. Il est possible d'appliquer l'adjectif « surjectif » à une fonction (voire à une correspondance) dont le domaine de définition n'est pas tout l'ensemble de départ, mais en général le terme « surjection » est réservé aux applications (qui sont définies sur tout leur ensemble de départ), auxquelles nous nous limiterons dans cet article (pour plus de détails, voir le paragraphe « Fonction et application » de l'article « Application »).
Upletvignette|Coordonnées XYZ. Basé sur le travail d'InductiveLoad En mathématiques, un uplet (désigné aussi par liste , famille finie, ou suite finie) est une collection ordonnée finie d'objets. Plus précisément, si n est un entier naturel, alors un n-uplet, ou n-uple, ou n-liste est une collection ordonnée de n objets, appelés « composantes » ou « éléments » ou « termes » du n-uplet. En programmation informatique, on trouve une notion équivalente dans certains langages, tels que Python, Rust, OCaml, Scala, Swift ou MDX.
Ensemblevignette|Ensemble de polygones dans un diagramme d'Euler En mathématiques, un ensemble désigne intuitivement un rassemblement d’objets distincts (les éléments de l'ensemble), « une multitude qui peut être comprise comme une totalité » pour paraphraser Georg Cantor qui est à l'origine de la théorie des ensembles. Dans une approche axiomatique, la théorie des ensembles est une théorie de l'appartenance (un élément d'un ensemble est dit « appartenir » à cet ensemble).
PointwiseIn mathematics, the qualifier pointwise is used to indicate that a certain property is defined by considering each value of some function An important class of pointwise concepts are the pointwise operations, that is, operations defined on functions by applying the operations to function values separately for each point in the domain of definition. Important relations can also be defined pointwise.
Injection canoniqueIn mathematics, if is a subset of then the inclusion map (also inclusion function, insertion, or canonical injection) is the function that sends each element of to treated as an element of A "hooked arrow" () is sometimes used in place of the function arrow above to denote an inclusion map; thus: (However, some authors use this hooked arrow for any embedding.) This and other analogous injective functions from substructures are sometimes called natural injections.