Explore un article de 2019 sur la reconnaissance d'images, les défis liés aux ensembles de données, les biais et l'impact des ensembles de données à grande échelle sur les modèles d'apprentissage en profondeur.
Explore l'évolution des systèmes d'image sociale, des modèles d'apprentissage en profondeur, des selfies et de la biométrie sur les plateformes en ligne.
Explore l'apprentissage en apprentissage profond pour les véhicules autonomes, couvrant les modèles prédictifs, RNN, ImageNet, et l'apprentissage de transfert.
Couvre les fondamentaux des réseaux neuronaux multicouches et de l'apprentissage profond, y compris la propagation arrière et les architectures réseau comme LeNet, AlexNet et VGG-16.
Présente BYOL, une méthode d'apprentissage auto-supervisée de la représentation d'images permettant d'obtenir des résultats de pointe sans paires négatives.
Explore l'évolution de la représentation de l'image, les défis dans l'apprentissage supervisé, les avantages de l'apprentissage auto-supervisé, et les progrès récents dans SSL.
Explore les algorithmes d'apprentissage automatique, les techniques de sélection des fonctionnalités telles que les descripteurs FAST et BRIEF, et les limites de l'apprentissage profond.