Variété abélienneEn mathématiques, et en particulier, en géométrie algébrique et géométrie complexe, une variété abélienne A est une variété algébrique projective qui est un groupe algébrique. La condition de est l'équivalent de la compacité pour les variétés différentielles ou analytiques, et donne une certaine rigidité à la structure. C'est un objet central en géométrie arithmétique. Une variété abélienne sur un corps k est un groupe algébrique A sur k, dont la variété algébrique sous-jacente est projective, connexe et géométriquement réduite.
Alexandre GrothendieckAlexandre Grothendieck, né Alexander Grothendieck (prononcé en allemand : ), est un mathématicien français, né le à Berlin et mort le à Saint-Lizier, près de Saint-Girons (Ariège). Il est resté longtemps apatride tout en vivant principalement en France ; il a acquis la nationalité française en 1971. Il est considéré comme le refondateur de la géométrie algébrique et, à ce titre, comme l'un des plus grands mathématiciens du . Il était connu pour son intuition extraordinaire et sa capacité de travail exceptionnelle.
Groupe réductifEn mathématiques, un groupe réductif est un groupe algébrique G sur un corps algébriquement clos tel que le radical unipotent de G (c'est-à-dire le sous-groupe des éléments unipotents de ) soit trivial. Tout est réductif, de même que tout tore algébrique et tout groupe général linéaire. Plus généralement, sur un corps k non nécessairement algébriquement clos, un groupe réductif est un groupe algébrique affine lisse G tel que le radical unipotent de G sur la clôture algébrique de k soit trivial.
Représentation de groupeEn mathématiques, une représentation de groupe décrit un groupe en le faisant agir sur un espace vectoriel de manière linéaire. Autrement dit, on essaie de voir le groupe comme un groupe de matrices, d'où le terme représentation. On peut ainsi, à partir des propriétés relativement bien connues du groupe des automorphismes de l'espace vectoriel, arriver à déduire quelques propriétés du groupe. C'est l'un des concepts importants de la théorie des représentations.
Action de groupe (mathématiques)En mathématiques, une action d'un groupe sur un ensemble est une loi de composition externe du groupe sur l'ensemble, vérifiant des conditions supplémentaires. Plus précisément, c'est la donnée, pour chaque élément du groupe, d'une permutation de l'ensemble, de telle manière que toutes ces bijections se composent de façon compatible avec la loi du groupe. Étant donné un ensemble E et un groupe G, dont la loi est notée multiplicativement et dont l'élément neutre est noté e, une action (ou opération) de G sur E est une application : vérifiant chacune des 2 propriétés suivantes : On dit également que G opère (ou agit) sur l'ensemble E.
Linear algebraic groupIn mathematics, a linear algebraic group is a subgroup of the group of invertible matrices (under matrix multiplication) that is defined by polynomial equations. An example is the orthogonal group, defined by the relation where is the transpose of . Many Lie groups can be viewed as linear algebraic groups over the field of real or complex numbers. (For example, every compact Lie group can be regarded as a linear algebraic group over R (necessarily R-anisotropic and reductive), as can many noncompact groups such as the simple Lie group SL(n,R).