Algèbre d'octonionsEn mathématiques, une algèbre d'octonions sur un corps commutatif est une algèbre non associative de dimension 8 qui généralise l'algèbre des octonions de Cayley. Dans cet article, K désigne un corps commutatif (de caractéristique quelconque) et les algèbres ne sont pas supposées être associatives ou unitaires et elles sont supposées être de dimension finie. Par définition, une algèbre d'octonions sur K est une algèbre de composition de dimension 8 sur K. (Voir les propriétés élémentaires, voir l'article sur ces algèbres.
Algèbre de JordanEn algèbre générale, une algèbre de Jordan est une algèbre sur un corps commutatif, dans laquelle l'opération de multiplication interne, a deux propriétés : elle est commutative, c’est-à-dire que elle vérifie l'identité suivante, dite identité de Jordan : . Une algèbre de Jordan n'est donc pas associative en général ; elle vérifie toutefois une propriété d’associativité faible, car elle est à puissances associatives et satisfait d’office à une généralisation de l'identité de Jordan : en notant simplement le produit de m termes , on a, pour tous les entiers positifs m et n, .
Théorème de Frobenius (algèbre)En mathématiques, plus spécifiquement en algèbre, le théorème de Frobenius, démontré par Ferdinand Georg Frobenius en 1877, caractérise les algèbres associatives à division de dimension finie sur le corps commutatif R des réels. Il n'y en a que trois (à isomorphisme près) : le corps R des réels, celui C des complexes et le corps non commutatif H des quaternions. Le théorème de Frobenius généralisé de Hurwitz établit que si l'on enlève les contraintes d'associativité et de finitude mais qu'on rajoute celle d'être une algèbre de composition, on ne trouve qu'une quatrième R-algèbre à division : celle des octonions.
Plan de CayleyEn mathématiques, le plan de Cayley (ou plan projectif octonionique) P2(O) est un plan projectif sur les octonions. Le plan de Cayley a été découvert en 1933 par la mathématicienne allemande Ruth Moufang et porte le nom d'Arthur Cayley pour son article de 1845 décrivant les octonions. Dans le plan de Cayley, les droites et les points peuvent être définis de manière naturelle de sorte à former un espace projectif de dimension deux, c'est-à-dire un plan projectif. C'est un plan non arguésien, c'est-à-dire que le théorème de Desargues n'est pas vérifié.