Concept

Paradoxe de Burali-Forti

Concepts associés (16)
Schéma d'axiomes de compréhension
Le schéma d'axiomes de compréhension, ou schéma d'axiomes de séparation, est un schéma d'axiomes de la théorie des ensembles introduit par Zermelo dans sa théorie des ensembles, souvent notée Z. On dit souvent en abrégé schéma de compréhension ou schéma de séparation. La théorie des classes permet de l'exprimer comme un seul axiome. Étant donné un ensemble A et une propriété P exprimée dans le langage de la théorie des ensembles, il affirme l'existence de l'ensemble B des éléments de A vérifiant la propriété P.
New Foundations
En logique mathématique, New Foundations (NF) est une théorie des ensembles axiomatique introduite par Willard Van Orman Quine en 1937, dans un article intitulé « New Foundations for Mathematical Logic », et qui a connu un certain nombre de variantes. Pour éviter le paradoxe de Russell, le principe de compréhension est restreint aux formules stratifiées, une restriction inspirée de la théorie des types, mais où la notion de type est implicite.
Théorie des ensembles de Zermelo-Fraenkel
vignette|L'appartenance En mathématiques, la théorie des ensembles de Zermelo-Fraenkel, abrégée en ZF, est une axiomatisation en logique du premier ordre de la théorie des ensembles telle qu'elle avait été développée dans le dernier quart du par Georg Cantor. L'axiomatisation a été élaborée au début du par plusieurs mathématiciens dont Ernst Zermelo et Abraham Fraenkel mais aussi Thoralf Skolem.
Imprédicativité
L'imprédicativité est un terme du domaine des mathématiques, de la logique, de la théorie des ensembles et de la théorie des types. On dit qu'il y a imprédicativité « lorsqu'un objet parle de lui-même ». Une définition est imprédicative si l'objet défini intervient dans la définition elle-même. Le paradoxe de Russell est un célèbre exemple d'imprédicativité menant à une contradiction : il introduit « l'ensemble de tous les ensembles qui ne se contiennent pas eux-mêmes » (par « contiennent », on comprendra « éléments de ») En réaction à ce paradoxe et à d'autres Henri Poincaré et Bertrand Russell ont énoncé le « principe du cercle vicieux » ou de la pétition de principe.
Nombre ordinal
vignette|Spirale représentant les nombres ordinaux inférieurs à ωω. En mathématiques, on appelle nombre ordinal un objet permettant de caractériser le type d'ordre d'un ensemble bien ordonné quelconque, tout comme en linguistique, les mots premier, deuxième, troisième, quatrième, etc. s'appellent des adjectifs numéraux ordinaux, et servent à préciser le rang d'un objet dans une collection, ou l'ordre d'un événement dans une succession.
Type d'ordre
En mathématiques, en particulier dans la théorie des ensembles, deux ensembles ordonnés X et Y sont dits avoir le même type d'ordre s'ils sont isomorphes pour l'ordre, c'est-à-dire, s'il existe une bijection f: X → Y telle que f et son inverse soient strictement croissantes (c'est-à-dire préservent l'ordre). Dans le cas particulier où X est totalement ordonnée, la monotonie de f implique la monotonie de son inverse. Par exemple, l'ensemble des entiers et l'ensemble des nombres entiers pairs ont le même type d'ordre, parce que la correspondance et sa réciproque préservent toutes deux l'ordre.
Paradoxe de Cantor
Le paradoxe de Cantor, ou paradoxe du plus grand cardinal, est un paradoxe de la théorie des ensembles dont l'argument a été découvert par Georg Cantor dans les années 1890. On le trouve dans sa lettre adressée à David Hilbert, datée de 1897. Il est appelé ainsi par Bertrand Russell dans ses Principles of Mathematics de 1903. Le paradoxe énonce que l'existence d'un plus grand cardinal conduit à une contradiction.
Paradoxe de Russell
Le paradoxe de Russell, ou antinomie de Russell, est un paradoxe très simple de la théorie des ensembles (Russell lui-même parle de théorie des classes, en un sens équivalent), qui a joué un rôle important dans la formalisation de celle-ci. Il fut découvert par Bertrand Russell vers 1901 et publié en 1903. Il était en fait déjà connu à Göttingen, où il avait été découvert indépendamment par Ernst Zermelo, à la même époque, mais ce dernier ne l'a pas publié.
Finitisme
Le finitisme est une philosophie des mathématiques qui ne prend en considération que les objets mathématiques finis. On peut faire la comparaison avec la philosophie des mathématiques traditionnelle où les objets mathématiques infinis (par exemple, ensembles infinis) sont aussi légitimes que les autres. L'idée principale des mathématiques finitistes est le fait de ne pas accepter l'existence d'objets infinis, tels que des ensembles infinis.
Classe (mathématiques)
En mathématiques, la notion de classe généralise celle d'ensemble. Les deux termes sont parfois employés comme synonymes, mais la théorie des ensembles distingue ces deux notions. Un ensemble peut être vu comme une collection d'objets, mais aussi comme un objet mathématique, qui en particulier peut lui-même appartenir à un autre ensemble. Ce n'est pas forcément le cas d'une classe, qui est une collection d'objets que l'on peut définir, dont on peut donc parler, mais qui ne forme pas nécessairement un ensemble.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.