Espace nucléaireEn mathématiques, et plus précisément en analyse, un espace nucléaire est un espace vectoriel topologique possédant certaines propriétés analogues à celles des espaces de dimension finie. Leur topologie peut être définie par une famille de semi-normes dont la taille des boules unités décroit rapidement. Les espaces vectoriels dont les éléments sont « lisses » en un certain sens sont souvent des espaces nucléaires ; un exemple typique est celui des fonctions régulières sur une variété compacte.
Espace de SobolevEn analyse mathématique, les espaces de Sobolev sont des espaces fonctionnels particulièrement adaptés à la résolution des problèmes d'équation aux dérivées partielles. Ils doivent leur nom au mathématicien russe Sergueï Lvovitch Sobolev. Plus précisément, un espace de Sobolev est un espace vectoriel de fonctions muni de la norme obtenue par la combinaison de la norme L de la fonction elle-même et de ses dérivées jusqu'à un certain ordre. Les dérivées sont comprises dans un sens faible, au sens des distributions afin de rendre l'espace complet.
Suite régularisanteEn mathématiques, une suite régularisante est une suite de fonctions régulières utilisées afin de donner une approximation lisse de fonctions généralisées, le plus souvent par convolution afin de lisser les discontinuités. Une suite de fonctions tests ( C à support compact) sur est dite régularisante si, pour tout indice : le support de est inclus dans une boule avec : les fonctions sont donc de plus en plus resserrées autour de l'origine.
Absolue continuitéEn mathématiques, et plus précisément en analyse, on définit, pour des fonctions définies sur un intervalle borné, la notion de fonction absolument continue, un peu plus forte que la notion de fonction uniformément continue, et garantissant de bonnes propriétés d'intégration ; on lui associe d'ailleurs la notion de mesure absolument continue. Le premier théorème fondamental de l'analyse a pour conséquence que toute fonction continue sur un intervalle réel est égale à la dérivée de sa fonction intégrale (au sens de Riemann) définie par .
Fonction porteLa fonction porte, généralement notée Π, est la fonction indicatrice de l'intervalle réel [–1/2, 1/2], c'est-à-dire la fonction mathématique par laquelle un nombre réel a une nulle, sauf s'il est compris entre –1/2 et 1/2, auquel cas son image vaut 1. Son graphe a une forme similaire à celle d'une porte, d'où son nom. La fonction porte , définie sur les réels et à valeurs dans , est définie par : Par généralisation, on appelle également fonction porte toute fonction déduite par translation et/ou dilatation de la fonction définie ci-dessus.
Peigne de Diracvignette|La distribution peigne de Dirac est une série infinie de distributions de Dirac espacées de T.|208x208pxEn mathématiques, la distribution peigne de Dirac, ou distribution cha (d'après la lettre cyrillique Ш), est une somme de distributions de Dirac espacées de T : Cette distribution périodique est particulièrement utile dans les problèmes d'échantillonnage, remplacement d'une fonction continue par une suite de valeurs de la fonction séparées par un pas de temps T (voir Théorème d'échantillonnage de Nyquist-Shannon).
HyperfonctionLa notion d'hyperfonction, due à Mikio Satō, généralise celle de distribution (au sens de Schwartz). Les hyperfonctions sur la droite réelle se définissent comme différences des « valeurs au bord » sur l'axe réel de fonctions holomorphes; elles permettent de trouver des solutions non triviales à des équations différentielles linéaires dont la seule solution est nulle dans l'espace des distributions.
Laurent Schwartz (mathématicien)Laurent Moïse Schwartz est un mathématicien français, né le à Paris où il est mort le . Il est le premier Français à obtenir la médaille Fields, en 1950 pour ses travaux sur la théorie des distributions. Professeur emblématique à l'École polytechnique de 1959 à 1980, membre de l'Académie des sciences et intellectuel engagé, il s'est distingué par ses nombreux combats politiques. Laurent Schwartz est issu d’une famille juive d’origine alsacienne, imprégnée de culture scientifique.
Valeur principale de CauchyEn mathématiques, la valeur principale de Cauchy, appelée ainsi en l'honneur d'Augustin Louis Cauchy, associe une valeur à certaines intégrales impropres qui resteraient autrement indéfinies. Soit c une singularité d'une fonction d'une variable réelle f et supposons que pour a
FonctionnelleIn mathematics, a functional (as a noun) is a certain type of function. The exact definition of the term varies depending on the subfield (and sometimes even the author). In linear algebra, it is synonymous with linear forms, which are linear mappings from a vector space into its field of scalars (that is, they are elements of the dual space ) In functional analysis and related fields, it refers more generally to a mapping from a space into the field of real or complex numbers.