Noyau de Dirichletthumb|upright=2|Tracé des premiers noyaux de Dirichlet. En mathématiques, et plus précisément en analyse, le n-ième noyau de Dirichlet — nommé ainsi en l'honneur du mathématicien allemand Johann Dirichlet — est le polynôme trigonométrique défini par : C'est donc une fonction 2π-périodique de classe . Elle vérifie de plus : si x n'est pas un multiple entier de 2π, alors ; si x est un multiple entier de 2π, alors . Le noyau de Dirichlet permet notamment d'améliorer la convergence des séries de Fourier.
Periodic summationIn mathematics, any integrable function can be made into a periodic function with period P by summing the translations of the function by integer multiples of P. This is called periodic summation: When is alternatively represented as a Fourier series, the Fourier coefficients are equal to the values of the continuous Fourier transform, at intervals of . That identity is a form of the Poisson summation formula. Similarly, a Fourier series whose coefficients are samples of at constant intervals (T) is equivalent to a periodic summation of which is known as a discrete-time Fourier transform.
Théorème d'inversion de FourierEn mathématiques, le théorème d'inversion de Fourier dit que pour de nombreux types de fonctions, il est possible de retrouver une fonction à partir de sa transformée de Fourier. En traitement du signal, on pourrait dire que la connaissance de toutes les informations d'amplitude et de phase des ondes constituant un signal permet précisément de reconstruire ce signal.
Opérateur de positionEn physique quantique, l'opérateur de position ou opérateur de localisation est l'opérateur qui formalise l'observable position de l'état quantique d'une particule. Dans une dimension, le carré du module de la fonction d'onde représente la densité de probabilité de trouver la particule à la position . La valeur moyenne ou l'espérance mathématique d'une mesure de la position de la particule est alors En conséquence, l'opérateur qui correspond à la position est , où L'accent circonflexe au-dessus du x à gauche indique un opérateur, de sorte que cette équation peut être lue comme Le résultat de l'action de l'opérateur x sur une fonction quelconque ψ(x) égale x multiplié par ψ(x).
Time–frequency representationA time–frequency representation (TFR) is a view of a signal (taken to be a function of time) represented over both time and frequency. Time–frequency analysis means analysis into the time–frequency domain provided by a TFR. This is achieved by using a formulation often called "Time–Frequency Distribution", abbreviated as TFD. TFRs are often complex-valued fields over time and frequency, where the modulus of the field represents either amplitude or "energy density" (the concentration of the root mean square over time and frequency), and the argument of the field represents phase.
Singular integralIn mathematics, singular integrals are central to harmonic analysis and are intimately connected with the study of partial differential equations. Broadly speaking a singular integral is an integral operator whose kernel function K : Rn×Rn → R is singular along the diagonal x = y. Specifically, the singularity is such that |K(x, y)| is of size |x − y|−n asymptotically as |x − y| → 0. Since such integrals may not in general be absolutely integrable, a rigorous definition must define them as the limit of the integral over |y − x| > ε as ε → 0, but in practice this is a technicality.
Opérateur unitaireEn analyse fonctionnelle, un opérateur unitaire est un opérateur linéaire U d'un espace de Hilbert tel queUU = UU = Ioù U* est l'adjoint de U, et I l'opérateur identité. Cette propriété est équivalente à : U est une application d' dense et U préserve le produit scalaire ⟨ , ⟩. Autrement dit, pour tous vecteurs x et y de l'espace de Hilbert, ⟨Ux, Uy⟩ = ⟨x, y⟩ (ce qui entraîne que U est linéaire). D'après l'identité de polarisation, on peut remplacer « U préserve le produit scalaire » par « U préserve la norme » donc par « U est une isométrie qui fixe 0 ».
Fréquence spatialeLa fréquence spatiale est une grandeur caractéristique d'une structure qui se reproduit identiquement à des positions régulièrement espacées. Elle est la mesure du nombre de répétitions par unité de longueur ou par unité d'angle. Le concept de fréquence spatiale trouve ses applications principales en optique, particulièrement en photographie, en vidéo et en astronomie. Elle permet de caractériser la finesse des détails d'une mire ou d'une image formée sur un capteur : elle s'exprime fréquemment en cycle par millimètre (cy/mm).
FenêtrageEn traitement du signal, le fenêtrage est utilisé dès que l'on s'intéresse à un signal de longueur volontairement limitée. En effet, un signal réel ne peut qu'avoir une durée limitée dans le temps ; de plus, un calcul ne peut se faire que sur un nombre fini de points. Pour observer un signal sur une durée finie, on le multiplie par une fonction fenêtre d'observation (également appelée fenêtre de pondération ou d'apodisation).
Variables conjuguées (formalisme hamiltonien)Dans le formalisme hamiltonien de la physique, deux variables sont dites conjuguées si l'une est la dérivée de l'action par rapport à l'autre. Le produit des deux variables conjuguées est alors homogène à une action et s'exprime, dans le Système international (SI) d'unités, en joule seconde (J·s). Par exemple, l'énergie et le temps sont deux variables conjuguées car le produit d'une énergie par une durée est homogène à une action.