Catégorie des groupesEn mathématiques, la catégorie des groupes est une construction qui rend compte abstraitement des propriétés observées en algèbre dans l'étude des groupes. La catégorie des groupes, notée Grp, est définie de la manière suivante : Ses objets sont les groupes ; Les morphismes sont les morphismes de groupes, munis de la composition usuelle de fonctions, l'identité étant l'application identité. En théorie des catégories supérieures il est parfois pratique de voir les groupes comme des groupoïdes possédant un unique objet, les flèches de cet unique objet vers lui-même étant dénotées par les éléments du groupe lui-même.
MonomorphismeDans le cadre de l'algèbre générale ou de l'algèbre universelle, un monomorphisme est simplement un morphisme injectif. Dans le cadre plus général de la théorie des catégories, un monomorphisme est un morphisme simplifiable à gauche, c'est-à-dire un morphisme tel que pour tout , ou encore : l'application Les monomorphismes sont la généralisation aux catégories des fonctions injectives ; dans certaines catégories, les deux notions coïncident d'ailleurs. Mais les monomorphismes restent des objets plus généraux (voir l'exemple ci-dessous).
ÉpimorphismeEn mathématiques, le terme « épimorphisme » peut avoir deux sens. 1) En théorie des catégories, un épimorphisme (aussi appelé epi) est un morphisme f : X → Y qui est simplifiable à droite de la manière suivante: g1 o f = g2 o f implique g1 = g2 pour tout morphisme g1, g2 : Y → Z. Suivant ce diagramme, on peut voir les épimorphismes comme des analogues aux fonctions surjectives, bien que ce ne soit pas exactement la même chose. Le dual d'un épimorphisme est un monomorphisme (c'est-à-dire qu'un épimorphisme dans une catégorie C est un monomorphisme dans la catégorie duale Cop).
ConoyauEn mathématiques, le conoyau d'un morphisme f : X → Y (par exemple un homomorphisme entre groupes ou bien un opérateur borné entre espaces de Hilbert) est la donnée d'un objet Q et d'un morphisme q : Y → Q tel que le morphisme composé soit le morphisme nul, et de plus Q est, en un certain sens, le plus "gros" objet possédant cette propriété. Souvent l'application q est sous-entendue, et Q est lui-même appelé conoyau de f. Les conoyaux sont les duaux des noyaux des catégories, d'où le nom.
Groupe quotientDans l'étude des groupes, le quotient d'un groupe est une opération classique permettant la construction de nouveaux groupes à partir d'anciens. À partir d'un groupe G et d'un sous-groupe H de G, on peut définir une loi de groupe sur l'ensemble G/H des classes de G suivant H, à condition que le sous-groupe H soit normal, c'est-à-dire que les classes à droite soient égales aux classes à gauche (gH = Hg). Étant donné un élément g de G, nous définissons la classe à gauche gH = { gh | h ∈ H }.
Catégorie des ensemblesEn mathématiques, plus précisément en théorie des catégories, la catégorie des ensembles, notée Set ou Ens, est la catégorie dont les objets sont les ensembles, et dont les morphismes sont les applications d'un ensemble dans un autre. Sa définition est motivée par le fait qu'en théorie des ensembles usuelle, il n'existe pas d'« ensemble de tous les ensembles », car l'existence d'un tel objet résulterait en une contradiction logique : le paradoxe de Russell.
Catégorie abélienneEn mathématiques, les catégories abéliennes forment une famille de catégories qui contient celle des groupes abéliens. Leur étude systématique a été instituée par Alexandre Grothendieck pour éclairer les liens qui existent entre différentes théories cohomologiques, comme la cohomologie des faisceaux ou la cohomologie des groupes. Toute catégorie abélienne est additive. Une catégorie abélienne est une catégorie additive dans laquelle on peut additionner les flèches et définir pour toute flèche les notions de noyau, conoyau et .