Noyau atomiquevignette|Noyau atomique de l'hélium.Le noyau atomique est la région située au centre d'un atome, constituée de protons et de neutrons (les nucléons). La taille du noyau (de l'ordre du femtomètre, soit ) est environ plus petite que celle de l'atome () et concentre quasiment toute sa masse. Les forces nucléaires qui s'exercent entre les nucléons sont à peu près un million de fois plus grandes que les forces entre les atomes ou les molécules. Les noyaux instables, dits radioactifs, sont ceux d'où s'échappent des neutrons.
Liaison nucléaireLa liaison nucléaire est le phénomène qui assure la cohésion d'un noyau atomique. Le noyau atomique est composé de protons de charge électrique positive, et de neutrons de charge électrique nulle. La répulsion coulombienne tend à séparer les protons. C'est la force nucléaire qui permet d'assurer la stabilité du noyau. L'énergie de liaison E d'un noyau atomique est l'énergie qu'il faut fournir au noyau pour le dissocier en ses nucléons, qui s'attirent du fait de la force nucléaire, force qui correspond à l’interaction forte résiduelle.
Formule de WeizsäckerLa formule de Weizsäcker, appelée aussi formule de Bethe-Weizsäcker, est une formule semi-empirique donnant une valeur approximative de l'énergie de liaison nucléaire B caractérisant la liaison entre les nucléons qui constituent le noyau des atomes (voir un résumé dans Modèle de la goutte liquide). L'éponyme de formule de Weizsäcker est le physicien allemand Carl Friedrich von Weizsäcker (-) qui l'a proposée en dans un article publié dans le de. Les physiciens Hans Bethe (-) et Robert Bacher (-) en ont simplifié l'expression en .
Even and odd atomic nucleiIn nuclear physics, properties of a nucleus depend on evenness or oddness of its atomic number (proton number) Z, neutron number N and, consequently, of their sum, the mass number A. Most importantly, oddness of both Z and N tends to lower the nuclear binding energy, making odd nuclei generally less stable. This effect is not only experimentally observed, but is included in the semi-empirical mass formula and explained by some other nuclear models, such as the nuclear shell model.
Modèle en couchesEn physique nucléaire, le modèle en couches est un modèle du noyau atomique fondé sur le principe d'exclusion de Pauli pour décrire la structure nucléaire sous l'angle des niveaux d'énergie. Ce modèle a été développé en 1949 à la suite des travaux indépendants de plusieurs physiciens, notamment Eugene Paul Wigner, Maria Goeppert Mayer et J. Hans D. Jensen.
Isotopethumb|upright=1.2|Quelques isotopes de l'oxygène, de l'azote et du carbone. On appelle isotopes (d'un certain élément chimique) les nucléides partageant le même nombre de protons (caractéristique de cet élément), mais ayant un nombre de neutrons différent. Autrement dit, si l'on considère deux nucléides dont les nombres de protons sont Z et Z, et les nombres de neutrons N et N, ces nucléides sont dits isotopes si Z = Z et N ≠ N.
Hélium 4L’hélium 4, noté He, est l'isotope de l'hélium dont le nombre de masse est égal à 4 : son noyau atomique compte deux protons et deux neutrons pour une masse atomique de et un spin 0+. Il est caractérisé par un excès de masse de et une énergie de liaison nucléaire par nucléon de . Son rayon de charge a pu être estimé expérimentalement à . En physique nucléaire, le noyau d' est souvent appelé particule α. Sur Terre, l'hélium 4 provient de la radioactivité α des éléments lourds présents dans la planète depuis sa formation.
Isotope stablevignette|Table des isotopes par mode de désintégration majoritaire (données du programme Nucleus). Un isotope stable d'un élément chimique est un isotope qui n'a pas de radioactivité décelable. Au , 256 nucléides correspondant à 80 éléments étaient considérés comme stables, bien que le calcul pour un nombre significatif d'entre eux suggère qu'ils devraient connaître certains modes de désintégration. Les éléments 43 et 61 — respectivement le technétium et le prométhium — n'ont aucun isotope stable ; le technétium 99 est présent naturellement à l'état de traces.
Îlot de stabilitéL’îlot de stabilité est un ensemble hypothétique de nucléides transuraniens qui présenteraient une période radioactive très supérieure à celle des isotopes voisins. Ce concept est issu du modèle en couches du noyau atomique, dans lequel les nucléons sont vus comme des objets quantiques qui se répartissent dans le noyau en niveaux d'énergie de façon similaire aux électrons dans les atomes : lorsqu'un niveau d'énergie est saturé de nucléons, cela confère une stabilité particulière au noyau.
Force nucléaireLa force nucléaire, qui s'exerce entre nucléons, est responsable de la liaison des protons et des neutrons dans les noyaux atomiques. Elle peut être interprétée en termes d'échanges de mésons légers, comme les pions. Même si son existence est démontrée depuis les années 1930, les scientifiques n'ont pas réussi à établir une loi permettant de calculer sa valeur à partir de paramètres connus, contrairement aux lois de Coulomb et de Newton.