Concept

Hénagone

Concepts associés (7)
Plan (mathématiques)
En géométrie classique, un plan est une surface plate illimitée, munie de notions d’alignement, d’angle et de distance, et dans laquelle peuvent s’inscrire des points, droites, cercles et autres figures planes usuelles. Il sert ainsi de cadre à la géométrie plane, et en particulier à la trigonométrie lorsqu’il est muni d’une orientation, et permet de représenter l’ensemble des nombres complexes. Un plan peut aussi se concevoir comme partie d’un espace tridimensionnel euclidien, dans lequel il permet de définir les sections planes d’un solide ou d’une autre surface.
Digone
En géométrie euclidienne, un digone est un polygone dégénéré avec deux côtés (arêtes) et deux sommets. C'est le seul polygone régulier qui n'est ni simple, ni croisé. Son symbole de Schläfli est {2}. Un polyèdre sphérique peut contenir un digone non dégénéré (avec une aire intérieure non nulle) si les sommets sont antipodaux. L'angle interne du sommet du digone sphérique peut être tout angle compris entre 0 et . Un tel polygone sphérique peut aussi être appelé un fuseau sphérique.
Cas dégénéré
En mathématiques, un cas dégénéré peut consister en un objet dont la définition fait apparaître des éléments redondants ou superflus, se ramenant parfois à une définition plus simple. Il peut aussi être vu comme un cas particulier d'une construction générale, ne satisfaisant pas une certaine propriété générique, notamment si ces cas sont rares dans un sens topologique ou en théorie de la mesure.
Géométrie
La géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Polygone régulier
En géométrie euclidienne, un polygone régulier est un polygone à la fois équilatéral (tous ses côtés ont la même longueur) et équiangle (tous ses angles ont la même mesure). Un polygone régulier est soit convexe, soit étoilé. Tous les polygones réguliers convexes d'un même nombre de côtés sont semblables. Tout polygone régulier étoilé de n côtés a une enveloppe convexe de n côtés, qui est un polygone régulier. Un entier n supérieur ou égal à 3 étant donné, il existe un polygone régulier convexe de n côtés.
Polygone régulier étoilé
En géométrie, un polygone régulier étoilé (à ne pas confondre avec une partie étoilée) est un polygone régulier non convexe. Les polygones étoilés non réguliers ne sont pas formellement définis. Branko Grünbaum identifie deux notions primaires utilisées par Kepler, l'une étant le polygone régulier étoilé avec des arêtes sécantes qui ne génèrent pas de nouveaux sommets, et l'autre étant de simples polygones concaves.
Polygone
Un polygone, en géométrie euclidienne, est une figure géométrique plane formée d'une ligne brisée (appelée aussi ligne polygonale) fermée, c'est-à-dire d'une suite cyclique de segments consécutifs. Les segments sont appelés bords ou côtés et les extrémités des côtés sont appelés sommets ou coins du polygone. Un polygone est dit croisé si au moins deux côtés non consécutifs sont sécants, et simple si l'intersection de deux côtés est vide ou réduite à un sommet pour deux côtés consécutifs.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.