Couvre les concepts de lunettes de spin et d'estimation bayésienne, en se concentrant sur l'observation et la déduction de l'information d'un système de près.
Explore l'estimation non paramétrique à l'aide d'estimateurs de densité du noyau pour estimer les fonctions et les paramètres de distribution, en mettant l'accent sur la sélection de la bande passante pour une précision optimale.
Explore l'estimation des paramètres des EPS à l'aide de la théorie de la réponse linéaire et couvre les défis, les exemples, les algorithmes et la convergence.
Explore les statistiques non paramétriques, les méthodes bayésiennes et la régression linéaire en mettant l'accent sur l'estimation de la densité du noyau et la distribution postérieure.
Couvre l'estimation de la densité du noyau axée sur la sélection de la bande passante, la malédiction de la dimensionnalité, le compromis entre les biais et les modèles paramétriques et non paramétriques.